Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA.
Ecol Lett. 2011 Sep;14(9):877-85. doi: 10.1111/j.1461-0248.2011.01649.x. Epub 2011 Jul 12.
A major current challenge in evolutionary biology is to understand how networks of interacting species shape the coevolutionary process. We combined a model for trait evolution with data for twenty plant-animal assemblages to explore coevolution in mutualistic networks. The results revealed three fundamental aspects of coevolution in species-rich mutualisms. First, coevolution shapes species traits throughout mutualistic networks by speeding up the overall rate of evolution. Second, coevolution results in higher trait complementarity in interacting partners and trait convergence in species in the same trophic level. Third, convergence is higher in the presence of super-generalists, which are species that interact with multiple groups of species. We predict that worldwide shifts in the occurrence of super-generalists will alter how coevolution shapes webs of interacting species. Introduced species such as honeybees will favour trait convergence in invaded communities, whereas the loss of large frugivores will lead to increased trait dissimilarity in tropical ecosystems.
当前进化生物学的一个主要挑战是理解相互作用的物种网络如何塑造协同进化过程。我们结合了一个性状进化模型和 20 个动植物组合的数据,以探索互利共生网络中的协同进化。结果揭示了物种丰富的互利共生中协同进化的三个基本方面。首先,协同进化通过加速整体进化速度来塑造整个互利共生网络中的物种特征。其次,协同进化导致相互作用的伙伴之间更高的特征互补性和同一营养级的物种特征趋同。第三,在存在超广义种的情况下,趋同程度更高,超广义种是指与多个物种组相互作用的物种。我们预测,超级广义种在全球范围内出现的变化将改变协同进化塑造相互作用物种网络的方式。像蜜蜂这样的引入物种会促进入侵群落中的特征趋同,而大型食果动物的消失将导致热带生态系统中特征差异的增加。