Suppr超能文献

贝叶斯增长混合模型检验母亲高血压与出生结局。

A Bayesian growth mixture model to examine maternal hypertension and birth outcomes.

机构信息

Children's Environmental Health Initiative, Nicholas School of the Environment, Duke University, Durham, NC 27708, USA.

出版信息

Stat Med. 2011 Sep 30;30(22):2721-35. doi: 10.1002/sim.4291. Epub 2011 Jul 12.

Abstract

Maternal hypertension is a major contributor to adverse pregnancy outcomes, including preterm birth (PTB) and low birth weight (LBW). Although several studies have explored the relationship between maternal hypertension and fetal health, few have examined how the longitudinal trajectory of blood pressure, considered over the course of pregnancy, affects birth outcomes. In this paper, we propose a Bayesian growth mixture model to jointly examine the associations between longitudinal blood pressure measurements, PTB, and LBW. The model partitions women into distinct classes characterized by a mean arterial pressure (MAP) curve and joint probabilities of PTB and LBW. Each class contains a unique mixed effects model for MAP with class-specific regression coefficients and random effect covariances. To account for the strong correlation between PTB and LBW, we introduce a bivariate probit model within each class to capture residual within-class dependence between PTB and LBW. The model permits the association between PTB and LBW to vary by class, so that for some classes, PTB and LBW may be positively correlated, whereas for others, they may be uncorrelated or negatively correlated. We also allow maternal covariates to influence the class probabilities via a multinomial logit model. For posterior computation, we propose an efficient MCMC algorithm that combines full-conditional Gibbs and Metropolis steps. We apply our model to a sample of 1027 women enrolled in the Healthy Pregnancy, Healthy Baby Study, a prospective cohort study of host, social, and environmental contributors to disparities in pregnancy outcomes.

摘要

母体高血压是导致不良妊娠结局的主要因素之一,包括早产(PTB)和低出生体重(LBW)。尽管已有多项研究探讨了母体高血压与胎儿健康之间的关系,但很少有研究探讨血压的纵向轨迹(即整个孕期的血压变化)如何影响出生结局。在本文中,我们提出了一个贝叶斯增长混合模型,以联合研究纵向血压测量值、PTB 和 LBW 之间的关联。该模型将女性分为不同的类别,这些类别以平均动脉压(MAP)曲线和 PTB 和 LBW 的联合概率为特征。每个类别都包含一个独特的 MAP 混合效应模型,具有特定类别的回归系数和随机效应协方差。为了考虑到 PTB 和 LBW 之间的强相关性,我们在每个类别中引入了一个二元概率模型,以捕捉 PTB 和 LBW 之间的类内剩余依赖关系。该模型允许 PTB 和 LBW 之间的关联因类别而异,因此对于某些类别,PTB 和 LBW 可能呈正相关,而对于其他类别,它们可能不相关或呈负相关。我们还允许母体协变量通过多项逻辑回归模型影响类别概率。对于后验计算,我们提出了一种有效的 MCMC 算法,该算法结合了全条件 Gibbs 和 Metropolis 步骤。我们将模型应用于 1027 名参加“健康妊娠、健康婴儿研究”的女性样本,这是一项关于宿主、社会和环境因素对妊娠结局差异的前瞻性队列研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验