Suppr超能文献

在 4T MRI 扫描仪中进行噪声的原位主动控制。

In situ active control of noise in a 4 T MRI scanner.

机构信息

School of Dynamic Systems, Mechanical Engineering, University of Cincinnati, Cincinnati, Ohio, USA.

出版信息

J Magn Reson Imaging. 2011 Sep;34(3):662-9. doi: 10.1002/jmri.22694. Epub 2011 Jul 12.

Abstract

PURPOSE

To evaluate the effectiveness of the proposed active noise control (ANC) system for the reduction of the acoustic noise emission generated by a 4 T MRI scanner during operation and to assess the feasibility of developing an ANC device that can be deployed in situ.

MATERIALS AND METHODS

Three typical scanning sequences, EPI (echo planar imaging), GEMS (gradient echo multislice), and MDEFT (modified driven equilibrium Fourier transform), were used for evaluating the performance of the ANC system, which was composed of a magnetic compatible headset and a multiple reference feedforward filtered-x least mean square controller.

RESULTS

The greatest reduction, about 55 dB, was achieved at the harmonic at a frequency of 1.3 kHz in the GEMS case. Approximately 21 dB and 30 dBA overall reduction was achieved for GEMS noise across the entire audible frequency range. For the MDEFT sequence, the control system achieved 14 dB and 14 dBA overall reduction in the audible frequency range, while 13 dB and 14 dBA reduction was obtained for the EPI case.

CONCLUSION

The result is highly encouraging because it shows great potential for treating magnetic resonance imaging noise with an ANC application during real-time scanning.

摘要

目的

评估所提出的有源噪声控制(ANC)系统在降低运行中 4T MRI 扫描仪产生的声学噪声排放方面的有效性,并评估开发可现场部署的 ANC 设备的可行性。

材料和方法

使用三种典型的扫描序列,EPI(回波平面成像)、GEMS(梯度回波多层)和 MDEFT(改良驱动平衡傅里叶变换),评估 ANC 系统的性能,该系统由磁兼容耳机和多个参考前馈滤波-x 最小均方控制器组成。

结果

在 GEMS 情况下,在频率为 1.3kHz 的谐波处获得了最大的约 55dB 的降低。在整个可听频率范围内,GEMS 噪声的总降低约为 21dB 和 30dBA。对于 MDEFT 序列,控制系统在可听频率范围内实现了 14dB 和 14dBA 的总降低,而对于 EPI 情况,则获得了 13dB 和 14dBA 的降低。

结论

结果令人鼓舞,因为它显示出在实时扫描期间使用 ANC 应用治疗磁共振成像噪声的巨大潜力。

相似文献

1
In situ active control of noise in a 4 T MRI scanner.
J Magn Reson Imaging. 2011 Sep;34(3):662-9. doi: 10.1002/jmri.22694. Epub 2011 Jul 12.
2
Adaptive speech enhancement using directional microphone in a 4-T MRI scanner.
MAGMA. 2015 Oct;28(5):473-84. doi: 10.1007/s10334-015-0485-4. Epub 2015 Apr 18.
3
Simulation study on active noise control for a 4-T MRI scanner.
Magn Reson Imaging. 2008 Apr;26(3):393-400. doi: 10.1016/j.mri.2007.08.003. Epub 2007 Dec 3.
5
Acoustic noise in a small-format 3.0-T neonatal MRI system.
Pediatr Radiol. 2024 Nov;54(12):2068-2076. doi: 10.1007/s00247-024-06070-9. Epub 2024 Oct 15.
6
Model gradient coil employing active acoustic control for MRI.
MAGMA. 2007 Dec;20(5-6):223-31. doi: 10.1007/s10334-007-0086-y. Epub 2007 Nov 15.
7
Acoustic FMRI noise: linear time-invariant system model.
IEEE Trans Biomed Eng. 2008 Sep;55(9):2115-23. doi: 10.1109/TBME.2008.923112.
8
Active cancellation system of acoustic noise in MR imaging.
IEEE Trans Biomed Eng. 1999 Feb;46(2):186-91. doi: 10.1109/10.740881.
9
Characterization of acoustic noise in a neonatal intensive care unit MRI system.
Pediatr Radiol. 2014 Aug;44(8):1011-9. doi: 10.1007/s00247-014-2909-0. Epub 2014 Mar 5.

引用本文的文献

1
A Numerical Systematic Review and Meta-Analysis of Diagnosing the Vibration Modes of the Cylindrical Shell in the MRI Machine.
Biomed Eng Comput Biol. 2025 Jul 10;16:11795972251353069. doi: 10.1177/11795972251353069. eCollection 2025.
2
Overview of Methods for Noise and Heat Reduction in MRI Gradient Coils.
Front Phys. 2022 Jul;10. doi: 10.3389/fphy.2022.907619. Epub 2022 Jul 8.
3
Gradient and shim technologies for ultra high field MRI.
Neuroimage. 2018 Mar;168:59-70. doi: 10.1016/j.neuroimage.2016.11.033. Epub 2016 Nov 30.
4
Adaptive speech enhancement using directional microphone in a 4-T MRI scanner.
MAGMA. 2015 Oct;28(5):473-84. doi: 10.1007/s10334-015-0485-4. Epub 2015 Apr 18.
5
Methodological challenges and solutions in auditory functional magnetic resonance imaging.
Front Neurosci. 2014 Aug 21;8:253. doi: 10.3389/fnins.2014.00253. eCollection 2014.

本文引用的文献

2
Simulation study on active noise control for a 4-T MRI scanner.
Magn Reson Imaging. 2008 Apr;26(3):393-400. doi: 10.1016/j.mri.2007.08.003. Epub 2007 Dec 3.
3
Acoustic noise characteristics of a 4 Telsa MRI scanner.
J Magn Reson Imaging. 2006 Mar;23(3):388-97. doi: 10.1002/jmri.20526.
5
Acoustic noise reduction in a 4 T MRI scanner.
MAGMA. 2002 Jan;13(3):172-6. doi: 10.1007/BF02678593.
7
Acoustic absorption measurement of human hair and skin within the audible frequency range.
J Acoust Soc Am. 2000 Nov;108(5 Pt 1):2238-42. doi: 10.1121/1.1314319.
8
Acoustic noise during functional magnetic resonance imaging.
J Acoust Soc Am. 2000 Oct;108(4):1683-96. doi: 10.1121/1.1310190.
9
Sound-level measurements and calculations of safe noise dosage during EPI at 3 T.
J Magn Reson Imaging. 2000 Jul;12(1):157-63. doi: 10.1002/1522-2586(200007)12:1<157::aid-jmri17>3.0.co;2-m.
10
Auditory noise associated with MR procedures: a review.
J Magn Reson Imaging. 2000 Jul;12(1):37-45. doi: 10.1002/1522-2586(200007)12:1<37::aid-jmri5>3.0.co;2-i.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验