Aston University, School of Life & Health Sciences, Birmingham, UK.
Biophys Chem. 2011 Oct;158(2-3):126-33. doi: 10.1016/j.bpc.2011.06.003. Epub 2011 Jun 22.
Intracellular degradation of genes, most notably within the endo-lysosomal compartment is considered a significant barrier to (non-viral) gene delivery in vivo. Previous reports based on in vitro studies claim that carriers possessing a mixture of primary, secondary and tertiary amines are able to buffer the acidic environment within the endosome, allowing for timely release of their contents, leading to higher transfection rates. In this report, we adopt an atomistic molecular dynamics (MD) simulation approach, comparing the complexation of 21-bp siRNA with low-generation polyamidoamine (PAMAM) dendrimers (G0 and G1) at both neutral and acidic pHs, the latter of which mimics the degradative environment within maturing 'late-endosomes'. Our simulations reveal that the time taken for the dendrimer-gene complex (dendriplex) to reach equilibrium is appreciably longer at low pH and this is accompanied by more compact packaging of the dendriplex, as compared to simulations performed at neutral pH. We also note larger absolute values of calculated binding free energies of the dendriplex at low pH, indicating a higher dendrimer-nucleic acid affinity in comparison with neutral pH. These novel simulations provide a more detailed understanding of low molecular-weight polymer-siRNA behavior, mimicking the endosomal environment and provide input of direct relevance to the "proton sponge theory", thereby advancing the rational design of non-viral gene delivery systems.
细胞内基因降解,特别是在内体溶酶体腔内,被认为是体内(非病毒)基因传递的一个重要障碍。基于体外研究的先前报告声称,具有伯、仲和叔胺混合物的载体能够缓冲内涵体中的酸性环境,从而使内容物及时释放,导致更高的转染率。在本报告中,我们采用原子分子动力学(MD)模拟方法,比较了在中性和酸性 pH 下,21 个碱基对的 siRNA 与低代聚酰胺胺(PAMAM)树状大分子(G0 和 G1)的络合情况,后者模拟了成熟“晚期内涵体”内的降解环境。我们的模拟结果表明,与中性 pH 下的模拟相比,低 pH 下树突状聚合物-基因复合物(树枝状聚合物)达到平衡所需的时间明显更长,并且树枝状聚合物的包装更加紧凑。我们还注意到,在低 pH 下计算出的树枝状聚合物的结合自由能的绝对值更大,这表明与中性 pH 相比,树枝状聚合物与核酸的亲和力更高。这些新的模拟提供了对低分子量聚合物-siRNA 行为的更详细的理解,模拟了内涵体环境,并为“质子海绵理论”提供了直接相关的输入,从而推进了非病毒基因传递系统的合理设计。
J Phys Chem B. 2010-12-20
J Phys Chem B. 2012-3-29
Biomacromolecules. 2005
Medchemcomm. 2019-8-16
Appl Mater Today. 2018-9
Beilstein J Org Chem. 2017-12-18
Int J Nanomedicine. 2017-2-7