Suppr超能文献

Transmembrane cytoskeletal modulation in preterminal growing axons: I. Arrest of bulk and organelle transport in goldfish retinal ganglion cell axons regenerating in vitro by lectins binding to sialoglycoconjugates.

作者信息

Edmonds B T, Koenig E

机构信息

Department of Physiology, University at Buffalo, New York.

出版信息

Cell Motil Cytoskeleton. 1990;17(2):106-17. doi: 10.1002/cm.970170206.

Abstract

Goldfish retinal ganglion cell (RGC) axons regenerating in vitro exhibit a novel mode of axoplasmic transport that entails a rapid bidirectional bulk redistribution of axoplasm, "packaged" as protruding varicosities and non-protruding phase-dense inclusions (Koenig et al.: J. Neurosci. 5:715-729, 1985; Edmonds and Koenig Brain Res. 406:288-293, 1987). We have used phase-contrast video microscopy to study transmembrane effects of surface-binding lectins on bulk transport and transport of single visible organelles in RGC axons. Our findings show that certain lectins which crosslink sialoglycoconjugates, such as wheat germ agglutinin (WGA) and the more specific sialic acid-binding lectin Limax flavus agglutinin (LFA), induce a rapid inhibition of transport activity. The LFA-induced inhibition of transport can be reversed by appropriate simple sugar haptens, and can also be antagonized by pretreatment with cytochalasin D. One of the consequences of LFA binding is an increase in RITC-conjugated phalloidin fluorescence staining of preterminal axons. The latter observation in conjunction with the antagonistic action of cytochalasin D suggests that one possible explanation for the transmembrane arrest of transport induced by crosslinking of surface sialoglycoconjugates may involve a polymerization and/or reorganization of the actin filament network which hinders translocation of mobile axoplasmic components.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验