University Hospital Freiburg, Department of Internal Medicine II/Molecular Biology, Hugstetter Str. 55, D-79106 Freiburg, Germany.
J Virol. 2011 Sep;85(18):9300-13. doi: 10.1128/JVI.05005-11. Epub 2011 Jul 13.
In all hepadnaviruses, protein-primed reverse transcription of the pregenomic RNA (pgRNA) is initiated by binding of the viral polymerase, P protein, to the ε RNA element. Universally, ε consists of a lower stem and an upper stem, separated by a bulge, and an apical loop. Complex formation triggers pgRNA encapsidation and the ε-templated synthesis of a DNA oligonucleotide (priming) that serves to generate minus-strand DNA. In vitro systems for duck hepatitis B virus (DHBV) yielded important insights into the priming mechanism, yet their relevance in infection is largely unexplored. Moreover, additional functions encoded in the DHBV ε (Dε) sequence could affect in vivo fitness. We therefore assessed the in vivo performances of five recombinant DHBVs bearing multiple mutations in the upper Dε stem. Three variants with only modestly reduced in vitro replication competence established chronic infection in ducks. From one variant but not another, three adapted new variants emerged upon passaging, as demonstrated by increased relative fitness in coinfections with wild-type DHBV. All three showed enhanced priming and replication competence in vitro, and in one, DHBV e antigen (DHBeAg) production was restored. Pronounced impacts on other Dε functions were not detected; however, gradual, synergistic contributions to overall performance are suggested by the fact of none of the variants reaching the in vivo fitness of wild-type virus. These data shed more light on the P-Dε interaction, define important criteria for the design of future in vivo evolution experiments, and suggest that the upper Dε stem sequences provided an evolutionary playground for DHBV to optimize in vivo fitness.
在所有的嗜肝 DNA 病毒中,前基因组 RNA(pgRNA)的蛋白引发逆转录是由病毒聚合酶 P 蛋白与 ε RNA 元件结合开始的。普遍来说,ε 由一个下部茎和一个上部茎组成,中间由一个凸起隔开,还有一个顶端环。形成复合物会触发 pgRNA 包装以及 ε 模板合成 DNA 寡核苷酸(引发),从而生成负链 DNA。鸭乙型肝炎病毒(DHBV)的体外系统为引发机制提供了重要的见解,但它们在感染中的相关性在很大程度上尚未得到探索。此外,DHBV ε (Dε)序列中编码的其他功能可能会影响体内适应性。因此,我们评估了五个具有 Dε 上部茎中多个突变的重组 DHBV 在体内的性能。三种变体的体外复制能力仅略有降低,在鸭子中建立了慢性感染。从一个变体中,但不是另一个变体中,通过与野生型 DHBV 共感染,出现了三种适应性新变体,这表明相对适应性增加。所有三种变体在体外都表现出增强的引发和复制能力,其中一种恢复了 DHBV e 抗原(DHBeAg)的产生。未检测到对其他 Dε 功能有明显影响;然而,由于没有一个变体达到野生型病毒的体内适应性,因此推测这些变体逐渐协同地对整体性能产生影响。这些数据进一步阐明了 P-Dε 相互作用,为未来体内进化实验的设计定义了重要标准,并表明 Dε 上部茎序列为 DHBV 提供了一个进化的游乐场,以优化体内适应性。