Suppr超能文献

体内感染揭示了编码禽乙型肝炎病毒 RNA 衣壳信号的多功能序列具有高水平的突变容忍性和缓慢的进化速度。

A high level of mutation tolerance in the multifunctional sequence encoding the RNA encapsidation signal of an avian hepatitis B virus and slow evolution rate revealed by in vivo infection.

机构信息

University Hospital Freiburg, Department of Internal Medicine II/Molecular Biology, Hugstetter Str. 55, D-79106 Freiburg, Germany.

出版信息

J Virol. 2011 Sep;85(18):9300-13. doi: 10.1128/JVI.05005-11. Epub 2011 Jul 13.

Abstract

In all hepadnaviruses, protein-primed reverse transcription of the pregenomic RNA (pgRNA) is initiated by binding of the viral polymerase, P protein, to the ε RNA element. Universally, ε consists of a lower stem and an upper stem, separated by a bulge, and an apical loop. Complex formation triggers pgRNA encapsidation and the ε-templated synthesis of a DNA oligonucleotide (priming) that serves to generate minus-strand DNA. In vitro systems for duck hepatitis B virus (DHBV) yielded important insights into the priming mechanism, yet their relevance in infection is largely unexplored. Moreover, additional functions encoded in the DHBV ε (Dε) sequence could affect in vivo fitness. We therefore assessed the in vivo performances of five recombinant DHBVs bearing multiple mutations in the upper Dε stem. Three variants with only modestly reduced in vitro replication competence established chronic infection in ducks. From one variant but not another, three adapted new variants emerged upon passaging, as demonstrated by increased relative fitness in coinfections with wild-type DHBV. All three showed enhanced priming and replication competence in vitro, and in one, DHBV e antigen (DHBeAg) production was restored. Pronounced impacts on other Dε functions were not detected; however, gradual, synergistic contributions to overall performance are suggested by the fact of none of the variants reaching the in vivo fitness of wild-type virus. These data shed more light on the P-Dε interaction, define important criteria for the design of future in vivo evolution experiments, and suggest that the upper Dε stem sequences provided an evolutionary playground for DHBV to optimize in vivo fitness.

摘要

在所有的嗜肝 DNA 病毒中,前基因组 RNA(pgRNA)的蛋白引发逆转录是由病毒聚合酶 P 蛋白与 ε RNA 元件结合开始的。普遍来说,ε 由一个下部茎和一个上部茎组成,中间由一个凸起隔开,还有一个顶端环。形成复合物会触发 pgRNA 包装以及 ε 模板合成 DNA 寡核苷酸(引发),从而生成负链 DNA。鸭乙型肝炎病毒(DHBV)的体外系统为引发机制提供了重要的见解,但它们在感染中的相关性在很大程度上尚未得到探索。此外,DHBV ε (Dε)序列中编码的其他功能可能会影响体内适应性。因此,我们评估了五个具有 Dε 上部茎中多个突变的重组 DHBV 在体内的性能。三种变体的体外复制能力仅略有降低,在鸭子中建立了慢性感染。从一个变体中,但不是另一个变体中,通过与野生型 DHBV 共感染,出现了三种适应性新变体,这表明相对适应性增加。所有三种变体在体外都表现出增强的引发和复制能力,其中一种恢复了 DHBV e 抗原(DHBeAg)的产生。未检测到对其他 Dε 功能有明显影响;然而,由于没有一个变体达到野生型病毒的体内适应性,因此推测这些变体逐渐协同地对整体性能产生影响。这些数据进一步阐明了 P-Dε 相互作用,为未来体内进化实验的设计定义了重要标准,并表明 Dε 上部茎序列为 DHBV 提供了一个进化的游乐场,以优化体内适应性。

相似文献

2
Relaxing the restricted structural dynamics in the human hepatitis B virus RNA encapsidation signal enables replication initiation in vitro.
PLoS Pathog. 2022 Mar 8;18(3):e1010362. doi: 10.1371/journal.ppat.1010362. eCollection 2022 Mar.

引用本文的文献

1
Relaxing the restricted structural dynamics in the human hepatitis B virus RNA encapsidation signal enables replication initiation in vitro.
PLoS Pathog. 2022 Mar 8;18(3):e1010362. doi: 10.1371/journal.ppat.1010362. eCollection 2022 Mar.
4
Hepatitis B virus reverse transcriptase: diverse functions as classical and emerging targets for antiviral intervention.
Emerg Microbes Infect. 2013 Sep;2(9):e56. doi: 10.1038/emi.2013.56. Epub 2013 Sep 4.
7
Distinct families of cis-acting RNA replication elements epsilon from hepatitis B viruses.
RNA Biol. 2012 Feb;9(2):130-6. doi: 10.4161/rna.18649. Epub 2012 Feb 1.
8
A SELEX-screened aptamer of human hepatitis B virus RNA encapsidation signal suppresses viral replication.
PLoS One. 2011;6(11):e27862. doi: 10.1371/journal.pone.0027862. Epub 2011 Nov 18.

本文引用的文献

1
cis-Acting sequences that contribute to synthesis of minus-strand DNA are not conserved between hepadnaviruses.
J Virol. 2010 Dec;84(24):12824-31. doi: 10.1128/JVI.01487-10. Epub 2010 Oct 6.
3
Nature, position, and frequency of mutations made in a single cycle of HIV-1 replication.
J Virol. 2010 Oct;84(19):9864-78. doi: 10.1128/JVI.00915-10. Epub 2010 Jul 21.
4
Viral mutation rates.
J Virol. 2010 Oct;84(19):9733-48. doi: 10.1128/JVI.00694-10. Epub 2010 Jul 21.
5
HIV-1 evolution: frustrating therapies, but disclosing molecular mechanisms.
Philos Trans R Soc Lond B Biol Sci. 2010 Jun 27;365(1548):1965-73. doi: 10.1098/rstb.2010.0072.
6
The early host innate immune response to duck hepatitis B virus infection.
J Gen Virol. 2010 Feb;91(Pt 2):509-20. doi: 10.1099/vir.0.015529-0. Epub 2009 Oct 21.
7
Hepatitis B virus resistance to nucleos(t)ide analogues.
Gastroenterology. 2009 Nov;137(5):1593-608.e1-2. doi: 10.1053/j.gastro.2009.08.063. Epub 2009 Sep 6.
8
Immune selection during chronic hepadnavirus infection.
Hepatol Int. 2008 Mar;2(1):3-16. doi: 10.1007/s12072-007-9024-3. Epub 2007 Dec 14.
9
The size of the viral inoculum contributes to the outcome of hepatitis B virus infection.
J Virol. 2009 Oct;83(19):9652-62. doi: 10.1128/JVI.00867-09. Epub 2009 Jul 22.
10
Fitness and its role in evolutionary genetics.
Nat Rev Genet. 2009 Aug;10(8):531-9. doi: 10.1038/nrg2603.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验