Chen Y, Robinson W S, Marion P L
Department of Medicine, Stanford University School of Medicine, California 94305.
J Virol. 1994 Aug;68(8):5232-8. doi: 10.1128/JVI.68.8.5232-5238.1994.
The genome of all hepadnaviruses has an open reading frame called the P gene, which encodes a polypeptide of 90 to 97 kDa. The product or products of this P gene are involved in multiple functions of the viral life cycle. These functions include a priming activity which initiates minus-strand DNA synthesis, a polymerase activity which synthesizes DNA by using either RNA or DNA templates (reverse transcriptase), a nuclease activity which degrades the RNA strand of RNA-DNA hybrids (RNase H), and involvement in packaging the RNA pregenome into nucleocapsids. In a previous study, we found that a single point mutation at position 711 in the duck hepatitis B virus (DHBV) P gene product RNase H domain prevented viral RNA packaging. In the present experiments, we have mutated additional conserved amino acids in the DHBV RNase H domain and examined the ability of viral genomes containing these mutations to package RNA and replicate viral DNA. Charged and sulfur group amino acids adjacent to Cys-711 were mutated. None of these mutants was defective in either RNA packaging or viral replication. We also tested a number of mutations on the basis of common elements in the crystal structures of Escherichia coli and human immunodeficiency virus reverse transcriptase RNase H enzymes and on the basis of the similarities of their amino acid sequences to those of the RNase H domains of DHBV and HBV. Our results revealed that the entire beta 4 strand and amino acids Leu-712, Leu-697, and Val-719 in the putative hydrophobic cores of the beta 4, alpha A, and alpha B regions, respectively, are involved in pregenomic RNA encapsidation. This suggests that the basic structure of the RNase H domain in the DHBV P gene product is required for viral RNA packaging. We used the in vitro DHBV minus-strand DNA priming system developed by Wang and Seeger (G.-H. Wang and C. Seeger, Cell 71:663-670, 1992) to test the effect of RNase H packaging mutations on P gene product enzymatic activity. While all packaging-defective mutants tested maintained DNA priming activity, levels were decreased 5- to 20-fold compared with that of the wild-type genome. This observation suggests that the hepadnavirus RNase H domain plays a role in optimizing priming of minus-strand DNA synthesis.
所有嗜肝DNA病毒的基因组都有一个名为P基因的开放阅读框,它编码一种90至97 kDa的多肽。该P基因的一个或多个产物参与病毒生命周期的多种功能。这些功能包括启动负链DNA合成的引发活性、以RNA或DNA为模板合成DNA的聚合酶活性(逆转录酶)、降解RNA-DNA杂交体RNA链的核酸酶活性(RNase H),以及参与将RNA前基因组包装进核衣壳。在先前的一项研究中,我们发现鸭乙型肝炎病毒(DHBV)P基因产物RNase H结构域中第711位的单点突变会阻止病毒RNA包装。在本实验中,我们对DHBV RNase H结构域中的其他保守氨基酸进行了突变,并检测了含有这些突变的病毒基因组包装RNA和复制病毒DNA的能力。对与半胱氨酸-711相邻的带电荷和含硫基团的氨基酸进行了突变。这些突变体在RNA包装或病毒复制方面均无缺陷。我们还基于大肠杆菌和人类免疫缺陷病毒逆转录酶RNase H酶晶体结构中的共同元件,以及基于它们的氨基酸序列与DHBV和HBV的RNase H结构域氨基酸序列的相似性,测试了一些突变。我们的结果表明,β4链的整个区域以及分别位于β4、αA和αB区域假定疏水核心中的氨基酸亮氨酸-712、亮氨酸-697和缬氨酸-719,都参与前基因组RNA的衣壳化。这表明DHBV P基因产物中RNase H结构域的基本结构是病毒RNA包装所必需的。我们使用Wang和Seeger(G.-H. Wang和C. Seeger,Cell 71:663-670,1992)开发的体外DHBV负链DNA引发系统,来测试RNase H包装突变对P基因产物酶活性的影响。虽然所测试的所有包装缺陷型突变体都保持了DNA引发活性,但与野生型基因组相比,活性水平降低了5至20倍。这一观察结果表明,嗜肝DNA病毒RNase H结构域在优化负链DNA合成的引发过程中发挥作用。