Laboratoire Plasticité et Physio-Pathologie de la Motricité, UMR 6196, Centre National de la Recherche Scientifique, and Aix-Marseille Université, F-13402 Marseille cedex 20, France.
J Neurosci. 2011 Jul 13;31(28):10184-8. doi: 10.1523/JNEUROSCI.0068-11.2011.
Patterned, spontaneous activity plays a critical role in the development of neuronal networks. A robust spontaneous activity is observed in vitro in spinal cord preparations isolated from immature rats. The rhythmic ventral root discharges rely mainly on the depolarizing/excitatory action of GABA and glycine early during development, whereas at later stages glutamate drive is primarily responsible for the rhythmic activity and GABA/glycine are thought to play an inhibitory role. However, rhythmic discharges mediated by the activation of GABA(A) receptors are recorded from dorsal roots (DRs). In the present study, we used the in vitro spinal cord preparation of neonatal rats to identify the relationship between discharges that are conducted antidromically along DRs and the spontaneous activity recorded from lumbar motoneurons. We show that discharges in DRs precede those in ventral roots and that primary afferent depolarizations (PADs) start earlier than EPSPs in motoneurons. EPSP-triggered averaging revealed that the action potentials propagate not only antidromically in the DR but also centrally and trigger EPSPs in motoneurons. Potentiating GABAergic antidromic discharges by diazepam increased the EPSPs recorded from motoneurons; conversely, blocking DR bursts markedly reduced these EPSPs. High intracellular concentrations of chloride are maintained in primary afferent terminals by the sodium-potassium-chloride cotransporter NKCC1. Blocking these cotransporters by bumetanide decreased both dorsal and ventral root discharges. We conclude that primary afferent fibers act as excitatory interneurons and that GABA, through PADs reaching firing threshold, is still playing a key role in promoting spontaneous activity in neonates.
模式化、自发性活动在神经元网络的发育中起着关键作用。在从幼年大鼠分离的脊髓制备物中,体外观察到了强大的自发性活动。节律性腹根放电主要依赖于 GABA 和甘氨酸在发育早期的去极化/兴奋作用,而在后期阶段,谷氨酸驱动主要负责节律性活动,并且 GABA/甘氨酸被认为发挥抑制作用。然而,通过 GABA(A)受体的激活介导的节律性放电是从背根 (DR) 记录的。在本研究中,我们使用新生大鼠的体外脊髓制备物来确定沿 DR 进行逆行放电与从腰运动神经元记录的自发性活动之间的关系。我们表明,DR 中的放电先于腹根中的放电,并且初级传入去极化 (PAD) 比运动神经元中的 EPSP 更早开始。EPSP 触发平均显示动作电位不仅在 DR 中逆行传播,而且在中枢传播并在运动神经元中触发 EPSP。地西泮增强 GABA 能逆行放电增加了从运动神经元记录的 EPSP;相反,阻断 DR 爆发明显减少了这些 EPSP。初级传入末梢中的氯离子通过钠-钾-氯共转运体 NKCC1 保持在高细胞内浓度。通过布美他尼阻断这些共转运体降低了背根和腹根放电。我们得出结论,初级传入纤维充当兴奋性中间神经元,并且 GABA 通过达到放电阈值的 PAD 仍然在促进新生儿的自发性活动中发挥关键作用。