Department of Pharmacology and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
Am J Physiol Renal Physiol. 2011 Oct;301(4):F765-72. doi: 10.1152/ajprenal.00201.2011. Epub 2011 Jul 13.
Cytochrome P-450 metabolites of arachidonic acid, the epoxyeicosatrienoic acids (EETs) and hydrogen peroxide (H(2)O(2)), are important signaling molecules in the kidney. In renal arteries, EETs cause vasodilation whereas H(2)O(2) causes vasoconstriction. To determine the physiological contribution of H(2)O(2), catalase is used to inactivate H(2)O(2). However, the consequence of catalase action on EET vascular activity has not been determined. In rat renal afferent arterioles, 14,15-EET caused concentration-related dilations that were inhibited by Sigma bovine liver (SBL) catalase (1,000 U/ml) but not Calbiochem bovine liver (CBL) catalase (1,000 U/ml). SBL catalase inhibition was reversed by the soluble epoxide hydrolase (sEH) inhibitor tAUCB (1 μM). In 14,15-EET incubations, SBL catalase caused a concentration-related increase in a polar metabolite. Using mass spectrometry, the metabolite was identified as 14,15-dihydroxyeicosatrienoic acid (14,15-DHET), the inactive sEH metabolite. 14,15-EET hydrolysis was not altered by the catalase inhibitor 3-amino-1,2,4-triazole (3-ATZ; 10-50 mM), but was abolished by the sEH inhibitor BIRD-0826 (1-10 μM). SBL catalase EET hydrolysis showed a regioisomer preference with greatest hydrolysis of 14,15-EET followed by 11,12-, 8,9- and 5,6-EET (V(max) = 0.54 ± 0.07, 0.23 ± 0.06, 0.18 ± 0.01 and 0.08 ± 0.02 ng DHET·U catalase(-1)·min(-1), respectively). Of five different catalase preparations assayed, EET hydrolysis was observed with two Sigma liver catalases. These preparations had low specific catalase activity and positive sEH expression. Mass spectrometric analysis of the SBL catalase identified peptide fragments matching bovine sEH. Collectively, these data indicate that catalase does not affect EET-mediated dilation of renal arterioles. However, some commercial catalase preparations are contaminated with sEH, and these contaminated preparations diminish the biological activity of H(2)O(2) and EETs.
花生四烯酸的细胞色素 P-450 代谢物、环氧化物三烯酸(EETs)和过氧化氢(H(2)O(2))是肾脏中的重要信号分子。在肾动脉中,EETs 引起血管舒张,而 H(2)O(2) 引起血管收缩。为了确定 H(2)O(2) 的生理贡献,使用过氧化氢酶使 H(2)O(2)失活。然而,过氧化氢酶作用对 EET 血管活性的后果尚未确定。在大鼠肾传入小动脉中,14,15-EET 引起浓度相关的舒张,该舒张被 Sigma 牛肝(SBL)过氧化氢酶(1,000 U/ml)抑制,但不被 Calbiochem 牛肝(CBL)过氧化氢酶(1,000 U/ml)抑制。SBL 过氧化氢酶抑制作用可被可溶性环氧化物水解酶(sEH)抑制剂 tAUCB(1 μM)逆转。在 14,15-EET 孵育中,SBL 过氧化氢酶引起与浓度相关的极性代谢物增加。通过质谱分析,该代谢物被鉴定为 14,15-二羟二十碳三烯酸(14,15-DHET),即无活性的 sEH 代谢物。过氧化氢酶抑制剂 3-氨基-1,2,4-三唑(3-ATZ;10-50 mM)对 14,15-EET 水解没有改变,但 sEH 抑制剂 BIRD-0826(1-10 μM)则消除了 14,15-EET 水解。SBL 过氧化氢酶 EET 水解表现出立体异构体偏好性,14,15-EET 的水解最大,其次是 11,12-、8,9-和 5,6-EET(V(max) = 0.54 ± 0.07、0.23 ± 0.06、0.18 ± 0.01 和 0.08 ± 0.02 ng DHET·U 过氧化氢酶(-1)·min(-1))。在五种不同的过氧化氢酶制剂中,两种 Sigma 肝过氧化氢酶观察到 EET 水解。这些制剂具有低特异性过氧化氢酶活性和阳性 sEH 表达。对 SBL 过氧化氢酶的质谱分析鉴定了与牛 sEH 匹配的肽片段。总的来说,这些数据表明过氧化氢酶不会影响肾小动脉中 EET 介导的舒张。然而,一些商业过氧化氢酶制剂受到 sEH 的污染,这些受污染的制剂会降低 H(2)O(2)和 EETs 的生物学活性。