Dick Claudia Fernanda, Dos-Santos André Luiz Araújo, Meyer-Fernandes José Roberto
Instituto de Microbiologia Professor Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, RJ, Brazil.
Enzyme Res. 2011;2011:103980. doi: 10.4061/2011/103980. Epub 2011 Jun 28.
Cellular metabolism depends on the appropriate concentration of intracellular inorganic phosphate (Pi). Pi starvation-responsive genes appear to be involved in multiple metabolic pathways, implying a complex Pi regulation system in microorganisms and plants. A group of enzymes is required for absorption and maintenance of adequate phosphate levels, which is released from phosphate esters and anhydrides. The phosphatase system is particularly suited for the study of regulatory mechanisms because phosphatase activity is easily measured using specific methods and the difference between the repressed and derepressed levels of phosphatase activity is easily detected. This paper analyzes the protein phosphatase system induced during phosphate starvation in different organisms.
细胞代谢依赖于细胞内无机磷酸盐(Pi)的适当浓度。Pi饥饿应答基因似乎参与多种代谢途径,这意味着微生物和植物中存在复杂的Pi调节系统。吸收和维持足够的磷酸盐水平需要一组酶,这些磷酸盐从磷酸酯和酸酐中释放出来。磷酸酶系统特别适合用于研究调节机制,因为磷酸酶活性可以使用特定方法轻松测量,并且磷酸酶活性的抑制水平和去抑制水平之间的差异很容易检测到。本文分析了不同生物体在磷酸盐饥饿期间诱导的蛋白磷酸酶系统。