Suppr超能文献

WNT 蛋白非依赖性β-连环蛋白蛋白的核内固有定位及其在丘脑神经元中的低降解率。

WNT protein-independent constitutive nuclear localization of beta-catenin protein and its low degradation rate in thalamic neurons.

机构信息

Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland.

出版信息

J Biol Chem. 2011 Sep 9;286(36):31781-8. doi: 10.1074/jbc.M111.229666. Epub 2011 Jul 9.

Abstract

Nuclear localization of β-catenin is a hallmark of canonical Wnt signaling, a pathway that plays a crucial role in brain development and the neurogenesis of the adult brain. We recently showed that β-catenin accumulates specifically in mature thalamic neurons, where it regulates the expression of the Ca(v)3.1 voltage-gated calcium channel gene. Here, we investigated the mechanisms underlying β-catenin accumulation in thalamic neurons. We report that a lack of soluble factors produced either by glia or cortical neurons does not impair nuclear β-catenin accumulation in thalamic neurons. We next found that the number of thalamic neurons with β-catenin nuclear localization did not change when the Wnt/Dishevelled signaling pathway was inhibited by Dickkopf1 or a dominant negative mutant of Dishevelled3. These results suggest a WNT-independent cell-autonomous mechanism. We found that the protein levels of APC, AXIN1, and GSK3β, components of the β-catenin degradation complex, were lower in the thalamus than in the cortex of the adult rat brain. Reduced levels of these proteins were also observed in cultured thalamic neurons compared with cortical cultures. Finally, pulse-chase experiments confirmed that cytoplasmic β-catenin turnover was slower in thalamic neurons than in cortical neurons. Altogether, our data indicate that the nuclear localization of β-catenin in thalamic neurons is their cell-intrinsic feature, which was WNT-independent but associated with low levels of proteins involved in β-catenin labeling for ubiquitination and subsequent degradation.

摘要

β-连环蛋白的核定位是经典 Wnt 信号通路的一个标志,该通路在大脑发育和成年大脑的神经发生中起着至关重要的作用。我们最近表明,β-连环蛋白特异性积累在成熟的丘脑神经元中,在那里它调节 Ca(v)3.1 电压门控钙通道基因的表达。在这里,我们研究了β-连环蛋白在丘脑神经元中积累的机制。我们报告说,无论是由神经胶质细胞还是皮质神经元产生的可溶性因子的缺乏都不会损害丘脑神经元中β-连环蛋白的核积累。我们接下来发现,当 Wnt/Dishevelled 信号通路被 Dickkopf1 或 Dishevelled3 的显性负突变体抑制时,具有β-连环蛋白核定位的丘脑神经元的数量并没有改变。这些结果表明存在 WNT 非依赖性的细胞自主机制。我们发现,在成年大鼠大脑的丘脑而非皮质中,β-连环蛋白降解复合物的 APC、AXIN1 和 GSK3β 等成分的蛋白水平较低。与皮质培养物相比,在培养的丘脑神经元中也观察到这些蛋白质水平降低。最后,脉冲追踪实验证实,细胞质β-连环蛋白周转在丘脑神经元中比在皮质神经元中更慢。总之,我们的数据表明,β-连环蛋白在丘脑神经元中的核定位是其细胞内在的特征,它与参与β-连环蛋白泛素化和随后降解的蛋白质的低水平有关,但与 Wnt 无关。

相似文献

1
3
Notoginsenoside R1 Promotes the Growth of Neonatal Rat Cortical Neurons via the Wnt/β-catenin Signaling Pathway.
CNS Neurol Disord Drug Targets. 2018;17(7):547-556. doi: 10.2174/1871527317666180711093538.
4
FOXKs promote Wnt/β-catenin signaling by translocating DVL into the nucleus.
Dev Cell. 2015 Mar 23;32(6):707-18. doi: 10.1016/j.devcel.2015.01.031.
5
HAT cofactor TRRAP mediates beta-catenin ubiquitination on the chromatin and the regulation of the canonical Wnt pathway.
Cell Cycle. 2008 Dec 15;7(24):3908-14. doi: 10.4161/cc.7.24.7354. Epub 2008 Dec 6.
8
Rac1 activation controls nuclear localization of beta-catenin during canonical Wnt signaling.
Cell. 2008 Apr 18;133(2):340-53. doi: 10.1016/j.cell.2008.01.052.
10
WDR26 is a new partner of Axin1 in the canonical Wnt signaling pathway.
FEBS Lett. 2016 May;590(9):1291-303. doi: 10.1002/1873-3468.12180. Epub 2016 May 3.

引用本文的文献

4
WNT Signaling Is a Key Player in Alzheimer's Disease.
Handb Exp Pharmacol. 2021;269:357-382. doi: 10.1007/164_2021_532.
5
Wnt/β-catenin signaling in brain development and mental disorders: keeping TCF7L2 in mind.
FEBS Lett. 2019 Jul;593(13):1654-1674. doi: 10.1002/1873-3468.13502. Epub 2019 Jun 30.
7
Genomic convergence of locus-based GWAS meta-analysis identifies AXIN1 as a novel Parkinson's gene.
Immunogenetics. 2018 Sep;70(9):563-570. doi: 10.1007/s00251-018-1068-0. Epub 2018 Jun 19.
8
Physiological role of β-catenin/TCF signaling in neurons of the adult brain.
Neurochem Res. 2013 Jun;38(6):1144-55. doi: 10.1007/s11064-013-0980-9. Epub 2013 Feb 2.

本文引用的文献

3
GSK3 signalling in neural development.
Nat Rev Neurosci. 2010 Aug;11(8):539-51. doi: 10.1038/nrn2870.
4
Targeting Wnt signaling: can we safely eradicate cancer stem cells?
Clin Cancer Res. 2010 Jun 15;16(12):3153-62. doi: 10.1158/1078-0432.CCR-09-2943. Epub 2010 Jun 8.
7
Reconstitution of a frizzled8.Wnt3a.LRP6 signaling complex reveals multiple Wnt and Dkk1 binding sites on LRP6.
J Biol Chem. 2010 Mar 19;285(12):9172-9. doi: 10.1074/jbc.M109.092130. Epub 2010 Jan 21.
8
Wnt signaling from development to disease: insights from model systems.
Cold Spring Harb Perspect Biol. 2009 Aug;1(2):a002881. doi: 10.1101/cshperspect.a002881.
9
Wnt2 regulates progenitor proliferation in the developing ventral midbrain.
J Biol Chem. 2010 Mar 5;285(10):7246-53. doi: 10.1074/jbc.M109.079822. Epub 2009 Dec 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验