Suppr超能文献

一种基于基因表达谱和 PPI 网络的新型核心连接蛋白复合物鉴定方法。

A Novel Core-Attachment-Based Method to Identify Dynamic Protein Complexes Based on Gene Expression Profiles and PPI Networks.

机构信息

School of Mathematics and Physics, University of South China, Hengyang, 421001, P. R. China.

Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, S7N 5A9, Canada.

出版信息

Proteomics. 2019 Mar;19(5):e1800129. doi: 10.1002/pmic.201800129. Epub 2019 Feb 20.

Abstract

Cellular functions are always performed by protein complexes. At present, many approaches have been proposed to identify protein complexes from protein-protein interaction (PPI) networks. Some approaches focus on detecting local dense subgraphs in PPI networks which are regarded as protein-complex cores, then identify protein complexes by including local neighbors. However, from gene expression profiles at different time points or tissues it is known that proteins are dynamic. Therefore, identifying dynamic protein complexes should become very important and meaningful. In this study, a novel core-attachment-based method named CO-DPC to detect dynamic protein complexes is presented. First, CO-DPC selects active proteins according to gene expression profiles and the 3-sigma principle, and constructs dynamic PPI networks based on the co-expression principle and PPI networks. Second, CO-DPC detects local dense subgraphs as the cores of protein complexes and then attach close neighbors of these cores to form protein complexes. In order to evaluate the method, the method and the existing algorithms are applied to yeast PPI networks. The experimental results show that CO-DPC performs much better than the existing methods. In addition, the identified dynamic protein complexes can match very well and thus become more meaningful for future biological study.

摘要

细胞功能通常由蛋白质复合物执行。目前,已经提出了许多从蛋白质-蛋白质相互作用(PPI)网络中识别蛋白质复合物的方法。一些方法侧重于检测 PPI 网络中的局部密集子图,这些子图被认为是蛋白质复合物的核心,然后通过包括局部邻居来识别蛋白质复合物。然而,从不同时间点或组织的基因表达谱中可知,蛋白质是动态的。因此,识别动态蛋白质复合物应该变得非常重要和有意义。在这项研究中,提出了一种名为 CO-DPC 的新的基于核心附着的方法来检测动态蛋白质复合物。首先,CO-DPC 根据基因表达谱和 3-sigma 原则选择活性蛋白,并基于共表达原理和 PPI 网络构建动态 PPI 网络。其次,CO-DPC 检测局部密集子图作为蛋白质复合物的核心,然后将这些核心的紧密邻居附着到一起形成蛋白质复合物。为了评估该方法,将该方法和现有的算法应用于酵母 PPI 网络。实验结果表明,CO-DPC 的性能明显优于现有的方法。此外,所识别的动态蛋白质复合物能够很好地匹配,因此对未来的生物学研究更有意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验