Shiee Navid, Bazin Pierre-Louis, Cuzzocreo Jennifer L, Blitz Ari, Pham Dzung L
The Laboratory of Medical Image Computing, Johns Hopkins University, USA.
Inf Process Med Imaging. 2011;22:1-12. doi: 10.1007/978-3-642-22092-0_1.
Segmentation of brain images often requires a statistical atlas for providing prior information about the spatial position of different structures. A major limitation of atlas-based segmentation algorithms is their deficiency in analyzing brains that have a large deviation from the population used in the construction of the atlas. We present an expectation-maximization framework based on a Dirichlet distribution to adapt a statistical atlas to the underlying subject. Our model combines anatomical priors with the subject's own anatomy, resulting in a subject specific atlas which we call an "adaptive atlas". The generation of this adaptive atlas does not require the subject to have an anatomy similar to that of the atlas population, nor does it rely on the availability of an ensemble of similar images. The proposed method shows a significant improvement over current segmentation approaches when applied to subjects with severe ventriculomegaly, where the anatomy deviates significantly from the atlas population. Furthermore, high levels of accuracy are maintained when the method is applied to subjects with healthy anatomy.
脑图像分割通常需要一个统计图谱来提供有关不同结构空间位置的先验信息。基于图谱的分割算法的一个主要局限性在于,它们在分析与构建图谱所使用的人群有较大偏差的大脑时存在不足。我们提出了一个基于狄利克雷分布的期望最大化框架,以使统计图谱适应基础受试者。我们的模型将解剖学先验与受试者自身的解剖结构相结合,从而生成一个我们称之为“自适应图谱”的特定于受试者的图谱。生成这种自适应图谱并不要求受试者的解剖结构与图谱人群的相似,也不依赖于一组相似图像的可用性。当应用于脑室明显增大且解剖结构与图谱人群有显著偏差的受试者时,所提出的方法相对于当前的分割方法有显著改进。此外,当该方法应用于解剖结构正常的受试者时,也能保持较高的准确性。