Suppr超能文献

一种用于磁共振脑图像分割的分层算法。

A hierarchical algorithm for MR brain image parcellation.

作者信息

Pohl Kilian M, Bouix Sylvain, Nakamura Motoaki, Rohlfing Torsten, McCarley Robert W, Kikinis Ron, Grimson W Eric L, Shenton Martha E, Wells William M

机构信息

Surgical Planning Laboratory, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA.

出版信息

IEEE Trans Med Imaging. 2007 Sep;26(9):1201-12. doi: 10.1109/TMI.2007.901433.

Abstract

We introduce an algorithm for segmenting brain magnetic resonance (MR) images into anatomical compartments such as the major tissue classes and neuro-anatomical structures of the gray matter. The algorithm is guided by prior information represented within a tree structure. The tree mirrors the hierarchy of anatomical structures and the subtrees correspond to limited segmentation problems. The solution to each problem is estimated via a conventional classifier. Our algorithm can be adapted to a wide range of segmentation problems by modifying the tree structure or replacing the classifier. We evaluate the performance of our new segmentation approach by revisiting a previously published statistical group comparison between first-episode schizophrenia patients, first-episode affective psychosis patients, and comparison subjects. The original study is based on 50 MR volumes in which an expert identified the brain tissue classes as well as the superior temporal gyrus, amygdala, and hippocampus. We generate analogous segmentations using our new method and repeat the statistical group comparison. The results of our analysis are similar to the original findings, except for one structure (the left superior temporal gyrus) in which a trend-level statistical significance (p = 0.07) was observed instead of statistical significance.

摘要

我们介绍了一种将脑磁共振(MR)图像分割为解剖区域的算法,这些区域包括主要组织类别以及灰质的神经解剖结构。该算法由树结构中表示的先验信息引导。这棵树反映了解剖结构的层次,子树对应于有限的分割问题。每个问题的解决方案通过传统分类器进行估计。通过修改树结构或替换分类器,我们的算法可以适应广泛的分割问题。我们通过重新审视先前发表的首发精神分裂症患者、首发情感性精神病患者和对照受试者之间的统计组比较,来评估我们新分割方法的性能。原始研究基于50个MR容积,其中一位专家识别了脑组织类别以及颞上回、杏仁核和海马体。我们使用新方法生成类似的分割,并重复统计组比较。我们的分析结果与原始发现相似,只是在一个结构(左侧颞上回)中观察到了趋势水平的统计显著性(p = 0.07),而非统计显著性。

相似文献

1
A hierarchical algorithm for MR brain image parcellation.
IEEE Trans Med Imaging. 2007 Sep;26(9):1201-12. doi: 10.1109/TMI.2007.901433.
2
A unified framework for MR based disease classification.
Inf Process Med Imaging. 2009;21:300-13. doi: 10.1007/978-3-642-02498-6_25.
3
A general framework for image segmentation using ordered spatial dependency.
Med Image Comput Comput Assist Interv. 2006;9(Pt 2):848-55. doi: 10.1007/11866763_104.
4
A unifying approach to registration, segmentation, and intensity correction.
Med Image Comput Comput Assist Interv. 2005;8(Pt 1):310-8. doi: 10.1007/11566465_39.
5
Highly accurate segmentation of brain tissue and subcortical gray matter from newborn MRI.
Med Image Comput Comput Assist Interv. 2006;9(Pt 1):199-206. doi: 10.1007/11866565_25.
6
Logarithm odds maps for shape representation.
Med Image Comput Comput Assist Interv. 2006;9(Pt 2):955-63. doi: 10.1007/11866763_117.
7
Multiclassifier fusion in human brain MR segmentation: modelling convergence.
Med Image Comput Comput Assist Interv. 2006;9(Pt 2):815-22. doi: 10.1007/11866763_100.
8
Detection and segmentation of pathological structures by the extended graph-shifts algorithm.
Med Image Comput Comput Assist Interv. 2007;10(Pt 1):985-93. doi: 10.1007/978-3-540-75757-3_119.
9
Multilevel segmentation and integrated bayesian model classification with an application to brain tumor segmentation.
Med Image Comput Comput Assist Interv. 2006;9(Pt 2):790-8. doi: 10.1007/11866763_97.
10
Automatic hippocampus segmentation of 7.0 Tesla MR images by combining multiple atlases and auto-context models.
Neuroimage. 2013 Dec;83:335-45. doi: 10.1016/j.neuroimage.2013.06.006. Epub 2013 Jun 11.

引用本文的文献

1
An end-to-end infant brain parcellation pipeline.
Intell Med. 2024 May;4(2):65-74. doi: 10.1016/j.imed.2023.05.002. Epub 2023 May 14.
2
An accessible deep learning tool for voxel-wise classification of brain malignancies from perfusion MRI.
Cell Rep Med. 2024 Mar 19;5(3):101464. doi: 10.1016/j.xcrm.2024.101464. Epub 2024 Mar 11.
3
Energy minimization segmentation model based on MRI images.
Front Neurosci. 2023 Apr 14;17:1175451. doi: 10.3389/fnins.2023.1175451. eCollection 2023.
4
Volumetric data of normal nucleus accumbens from magnetic resonance imaging scans.
Med Pharm Rep. 2021 Oct;94(4):449-457. doi: 10.15386/mpr-2004. Epub 2021 Oct 30.
6
Biomimetic phantom with anatomical accuracy for evaluating brain volumetric measurements with magnetic resonance imaging.
J Med Imaging (Bellingham). 2021 Jan;8(1):013503. doi: 10.1117/1.JMI.8.1.013503. Epub 2021 Jan 29.
7
Uncovering a Role for the Dorsal Hippocampal Commissure in Recognition Memory.
Cereb Cortex. 2020 Mar 14;30(3):1001-1015. doi: 10.1093/cercor/bhz143.
8
Automated Breast Density Measurements From Chest Computed Tomography Scans.
J Med Syst. 2019 Jun 22;43(8):242. doi: 10.1007/s10916-019-1363-9.
9
User-Guided Segmentation of Multi-modality Medical Imaging Datasets with ITK-SNAP.
Neuroinformatics. 2019 Jan;17(1):83-102. doi: 10.1007/s12021-018-9385-x.
10
In vivo estimation of normal amygdala volume from structural MRI scans with anatomical-based segmentation.
Surg Radiol Anat. 2018 Feb;40(2):145-157. doi: 10.1007/s00276-017-1915-y. Epub 2017 Aug 31.

本文引用的文献

1
Incorporating Non-rigid Registration into Expectation Maximization Algorithm to Segment MR Images.
Med Image Comput Comput Assist Interv. 2002 Sep;2488:564-571. doi: 10.1007/3-540-45786-0_70. Epub 2002 Oct 10.
2
Multiscale gradient watersheds of color images.
IEEE Trans Image Process. 2003;12(6):617-26. doi: 10.1109/TIP.2003.811490.
3
Adaptive segmentation of MRI data.
IEEE Trans Med Imaging. 1996;15(4):429-42. doi: 10.1109/42.511747.
4
Atlas stratification.
Med Image Comput Comput Assist Interv. 2006;9(Pt 1):712-9. doi: 10.1007/11866565_87.
5
Automatic anatomical brain MRI segmentation combining label propagation and decision fusion.
Neuroimage. 2006 Oct 15;33(1):115-26. doi: 10.1016/j.neuroimage.2006.05.061. Epub 2006 Jul 24.
6
A Bayesian model for joint segmentation and registration.
Neuroimage. 2006 May 15;31(1):228-39. doi: 10.1016/j.neuroimage.2005.11.044. Epub 2006 Feb 7.
7
Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies.
Am J Psychiatry. 2005 Dec;162(12):2233-45. doi: 10.1176/appi.ajp.162.12.2233.
8
9
Automatic segmentation of MR images of the developing newborn brain.
Med Image Anal. 2005 Oct;9(5):457-66. doi: 10.1016/j.media.2005.05.007.
10
Atlas-based hippocampus segmentation in Alzheimer's disease and mild cognitive impairment.
Neuroimage. 2005 Oct 1;27(4):979-90. doi: 10.1016/j.neuroimage.2005.05.005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验