Kirschner Matthias, Gollmer Sebastian T, Wesarg Stefan, Buzug Thorsten M
Graphisch-Interaktive Systeme, Technische Universität Darmstadt, Fraunhofer Strasse 5, 64283 Darmstadt, Germany.
Inf Process Med Imaging. 2011;22:308-19. doi: 10.1007/978-3-642-22092-0_26.
The identification of corresponding landmarks across a set of training shapes is a prerequisite for statistical shape model (SSM) construction. We automatically establish 3D correspondence using one new and several known alternative approaches for consistent, shape-preserving, spherical parameterization. The initial correspondence determined by all employed methods is refined by optimizing a groupwise objective function. The quality of all models before and after optimization is thoroughly evaluated using several data sets of clinically relevant, anatomical objects of varying complexity. Correspondence quality is benchmarked in terms of the SSMs' specificity and generalization ability, which are measured using different surface based distance functions. We find that our new approach performs best for complex objects. Furthermore, all new and previously published methods of our own allow for (i) building SSMs that are significantly better than the well-known SPHARM method, (ii) establishing quasi-optimal correspondence for low and moderately complex objects without additional optimization, and (iii) considerably speeding up convergence, thus, providing means for practical, fast, and accurate SSM construction.
在一组训练形状中识别相应的地标点是构建统计形状模型(SSM)的前提条件。我们使用一种新的方法以及几种已知的替代方法自动建立3D对应关系,以实现一致的、保形的球面参数化。通过优化一个组内目标函数来细化所有使用方法确定的初始对应关系。使用几个具有不同复杂度的临床相关解剖对象的数据集,对优化前后所有模型的质量进行了全面评估。对应质量根据SSM的特异性和泛化能力进行基准测试,这些能力使用不同的基于表面的距离函数进行测量。我们发现我们的新方法在处理复杂对象时表现最佳。此外,我们自己所有新的和先前发表的方法都能够(i)构建比著名的SPHARM方法明显更好的SSM,(ii)在无需额外优化的情况下为低复杂度和中等复杂度对象建立准最优对应关系,以及(iii)显著加快收敛速度,从而为实际、快速且准确地构建SSM提供了方法。