Suppr超能文献

激活纤维:基于任务的功能磁共振成像中以纤维为中心的激活检测

Activated fibers: fiber-centered activation detection in task-based FMRI.

作者信息

Lv Jinglei, Guo Lei, Li Kaiming, Hu Xintao, Zhu Dajiang, Han Junwei, Liu Tianming

机构信息

School of Automation, Northwestern Polytechnical University, Xi'an, China.

出版信息

Inf Process Med Imaging. 2011;22:574-87. doi: 10.1007/978-3-642-22092-0_47.

Abstract

In task-based fMRI, the generalized linear model (GLM) is widely used to detect activated brain regions. A fundamental assumption in the GLM model for fMRI activation detection is that the brain's response, represented by the blood-oxygenation level dependent (BOLD) signals of volumetric voxels, follows the shape of stimulus paradigm. Based on this same assumption, we use the dynamic functional connectivity (DFC) curves between two ends of a white matter fiber, instead of the BOLD signal, to represent the brain's response, and apply the GLM to detect Activated Fibers (AFs). Our rational is that brain regions connected by white matter fibers tend to be more synchronized during stimulus intervals than during baseline intervals. Therefore, the DFC curves for fibers connecting active brain regions should be positively correlated with the stimulus paradigm, which is verified by our extensive experiments using multimodal task-based fMRI and diffusion tensor imaging (DTI) data. Our results demonstrate that the detected AFs connect not only most of the activated brain regions detected via traditional voxel-based GLM method, but also many other brain regions, suggesting that the voxel-based GLM method may be too conservative in detecting activated brain regions.

摘要

在基于任务的功能磁共振成像(fMRI)中,广义线性模型(GLM)被广泛用于检测激活的脑区。fMRI激活检测的GLM模型中的一个基本假设是,由体素的血氧水平依赖(BOLD)信号表示的大脑反应遵循刺激范式的形状。基于相同的假设,我们使用白质纤维两端之间的动态功能连接(DFC)曲线,而不是BOLD信号,来表示大脑的反应,并应用GLM来检测激活纤维(AFs)。我们的理由是,在刺激间隔期间,由白质纤维连接的脑区往往比在基线间隔期间更同步。因此,连接活跃脑区的纤维的DFC曲线应与刺激范式呈正相关,这一点已通过我们使用多模态基于任务的fMRI和扩散张量成像(DTI)数据进行的大量实验得到验证。我们的结果表明,检测到的AFs不仅连接了通过传统的基于体素的GLM方法检测到的大多数激活脑区,还连接了许多其他脑区,这表明基于体素的GLM方法在检测激活脑区时可能过于保守。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验