Department of Computer Science and Bioimaging Research Center, The University of Georgia, Boyd GSRC 420, Athens, GA 30602, USA.
Neuroinformatics. 2013 Apr;11(2):193-210. doi: 10.1007/s12021-012-9157-y.
Diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) have been widely used to study structural and functional brain connectivity in recent years. A common assumption used in many previous functional brain connectivity studies is the temporal stationarity. However, accumulating literature evidence has suggested that functional brain connectivity is under temporal dynamic changes in different time scales. In this paper, a novel and intuitive approach is proposed to model and detect dynamic changes of functional brain states based on multimodal fMRI/DTI data. The basic idea is that functional connectivity patterns of all fiber-connected cortical voxels are concatenated into a descriptive functional feature vector to represent the brain's state, and the temporal change points of brain states are decided by detecting the abrupt changes of the functional vector patterns via the sliding window approach. Our extensive experimental results have shown that meaningful brain state change points can be detected in task-based fMRI/DTI, resting state fMRI/DTI, and natural stimulus fMRI/DTI data sets. Particularly, the detected change points of functional brain states in task-based fMRI corresponded well to the external stimulus paradigm administered to the participating subjects, thus partially validating the proposed brain state change detection approach. The work in this paper provides novel perspective on the dynamic behaviors of functional brain connectivity and offers a starting point for future elucidation of the complex patterns of functional brain interactions and dynamics.
近年来,扩散张量成像(DTI)和功能磁共振成像(fMRI)已广泛用于研究结构和功能脑连接。在许多先前的功能脑连接研究中,一个常用的假设是时间稳定性。然而,越来越多的文献证据表明,功能脑连接在不同时间尺度下存在时间动态变化。在本文中,提出了一种新颖而直观的方法,基于多模态 fMRI/ DTI 数据来模拟和检测功能脑状态的动态变化。基本思想是将所有纤维连接的皮质体素的功能连接模式串联成一个描述性的功能特征向量,以表示大脑的状态,并且通过滑动窗口方法检测功能向量模式的突然变化来决定脑状态的时间变化点。我们广泛的实验结果表明,可以在基于任务的 fMRI/ DTI、静息状态 fMRI/ DTI 和自然刺激 fMRI/ DTI 数据集检测到有意义的脑状态变化点。特别是,基于任务的 fMRI 中功能脑状态的检测到的变化点与给予参与受试者的外部刺激范式很好地对应,从而部分验证了所提出的脑状态变化检测方法。本文的工作为功能脑连接的动态行为提供了新的视角,并为未来阐明功能脑相互作用和动力学的复杂模式提供了起点。