Suppr超能文献

通过纤维中心功能连接分析检测大脑状态变化。

Detecting brain state changes via fiber-centered functional connectivity analysis.

机构信息

Department of Computer Science and Bioimaging Research Center, The University of Georgia, Boyd GSRC 420, Athens, GA 30602, USA.

出版信息

Neuroinformatics. 2013 Apr;11(2):193-210. doi: 10.1007/s12021-012-9157-y.

Abstract

Diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) have been widely used to study structural and functional brain connectivity in recent years. A common assumption used in many previous functional brain connectivity studies is the temporal stationarity. However, accumulating literature evidence has suggested that functional brain connectivity is under temporal dynamic changes in different time scales. In this paper, a novel and intuitive approach is proposed to model and detect dynamic changes of functional brain states based on multimodal fMRI/DTI data. The basic idea is that functional connectivity patterns of all fiber-connected cortical voxels are concatenated into a descriptive functional feature vector to represent the brain's state, and the temporal change points of brain states are decided by detecting the abrupt changes of the functional vector patterns via the sliding window approach. Our extensive experimental results have shown that meaningful brain state change points can be detected in task-based fMRI/DTI, resting state fMRI/DTI, and natural stimulus fMRI/DTI data sets. Particularly, the detected change points of functional brain states in task-based fMRI corresponded well to the external stimulus paradigm administered to the participating subjects, thus partially validating the proposed brain state change detection approach. The work in this paper provides novel perspective on the dynamic behaviors of functional brain connectivity and offers a starting point for future elucidation of the complex patterns of functional brain interactions and dynamics.

摘要

近年来,扩散张量成像(DTI)和功能磁共振成像(fMRI)已广泛用于研究结构和功能脑连接。在许多先前的功能脑连接研究中,一个常用的假设是时间稳定性。然而,越来越多的文献证据表明,功能脑连接在不同时间尺度下存在时间动态变化。在本文中,提出了一种新颖而直观的方法,基于多模态 fMRI/ DTI 数据来模拟和检测功能脑状态的动态变化。基本思想是将所有纤维连接的皮质体素的功能连接模式串联成一个描述性的功能特征向量,以表示大脑的状态,并且通过滑动窗口方法检测功能向量模式的突然变化来决定脑状态的时间变化点。我们广泛的实验结果表明,可以在基于任务的 fMRI/ DTI、静息状态 fMRI/ DTI 和自然刺激 fMRI/ DTI 数据集检测到有意义的脑状态变化点。特别是,基于任务的 fMRI 中功能脑状态的检测到的变化点与给予参与受试者的外部刺激范式很好地对应,从而部分验证了所提出的脑状态变化检测方法。本文的工作为功能脑连接的动态行为提供了新的视角,并为未来阐明功能脑相互作用和动力学的复杂模式提供了起点。

相似文献

8
Fiber-centered Granger causality analysis.以纤维为中心的格兰杰因果关系分析。
Med Image Comput Comput Assist Interv. 2011;14(Pt 2):251-9. doi: 10.1007/978-3-642-23629-7_31.

引用本文的文献

4
Estimating dynamic brain functional networks using multi-subject fMRI data.利用多主体 fMRI 数据估计动态脑功能网络。
Neuroimage. 2018 Dec;183:635-649. doi: 10.1016/j.neuroimage.2018.07.045. Epub 2018 Jul 24.

本文引用的文献

2
Fiber-centered Granger causality analysis.以纤维为中心的格兰杰因果关系分析。
Med Image Comput Comput Assist Interv. 2011;14(Pt 2):251-9. doi: 10.1007/978-3-642-23629-7_31.
3
Resting state fMRI-guided fiber clustering.静息态功能磁共振成像引导的纤维束聚类
Med Image Comput Comput Assist Interv. 2011;14(Pt 2):149-56. doi: 10.1007/978-3-642-23629-7_19.
6
A few thoughts on brain ROIs.关于脑 ROI 的几点思考。
Brain Imaging Behav. 2011 Sep;5(3):189-202. doi: 10.1007/s11682-011-9123-6.
7
Dynamic reconfiguration of human brain networks during learning.学习过程中人类大脑网络的动态重新配置。
Proc Natl Acad Sci U S A. 2011 May 3;108(18):7641-6. doi: 10.1073/pnas.1018985108. Epub 2011 Apr 18.
8
Complex span tasks and hippocampal recruitment during working memory.复杂跨度任务和工作记忆期间的海马体招募。
Neuroimage. 2011 Mar 15;55(2):773-87. doi: 10.1016/j.neuroimage.2010.12.033. Epub 2010 Dec 21.
10
Network modelling methods for FMRI.功能磁共振成像的网络建模方法。
Neuroimage. 2011 Jan 15;54(2):875-91. doi: 10.1016/j.neuroimage.2010.08.063. Epub 2010 Sep 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验