Suppr超能文献

自动化迭代 MS/MS 采集:一种用于提高 LC-MALDI MS 工作流程中蛋白质鉴定效率的工具。

Automated iterative MS/MS acquisition: a tool for improving efficiency of protein identification using a LC-MALDI MS workflow.

机构信息

UCSF Sandler-Moore Mass Spectrometry Core Facility and Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, California 94143, United States.

出版信息

Anal Chem. 2011 Aug 15;83(16):6286-93. doi: 10.1021/ac200911v. Epub 2011 Jul 15.

Abstract

We have developed an information-dependent, iterative MS/MS acquisition (IMMA) tool for improving MS/MS efficiency, increasing proteome coverage, and shortening analysis time for high-throughput proteomics applications based on the LC-MALDI MS/MS platform. The underlying principle of IMMA is to limit MS/MS analyses to a subset of molecular ions that are likely to identify a maximum number of proteins. IMMA reduces redundancy of MS/MS analyses by excluding from the precursor ion peak lists proteotypic peptides derived from the already identified proteins and uses a retention time prediction algorithm to limit the degree of false exclusions. It also increases the utilization rate of MS/MS spectra by removing "low value" unidentifiable targets like nonpeptides and peptides carrying large loads of modifications, which are flagged by their "nonpeptide" excess-to-nominal mass ratios. For some samples, IMMA increases the number of identified proteins by ∼20-40% when compared to the data dependent methods. IMMA terminates an MS/MS run at the operator-defined point when "costs" (e.g., time of analysis) start to overrun "benefits" (e.g., number of identified proteins), without prior knowledge of sample contents and complexity. To facilitate analysis of closely related samples, IMMA's inclusion list functionality is currently under development.

摘要

我们开发了一种基于 LC-MALDI MS/MS 平台的信息依赖型、迭代 MS/MS 采集(IMMA)工具,用于提高 MS/MS 效率、增加蛋白质组覆盖率,并缩短高通量蛋白质组学应用的分析时间。IMMA 的基本原理是将 MS/MS 分析限制在可能识别最大数量蛋白质的分子离子子集上。IMMA 通过从已经鉴定的蛋白质中排除衍生自鉴定蛋白质的特征肽来减少 MS/MS 分析的冗余,并使用保留时间预测算法来限制误排除的程度。它还通过去除“低值”无法识别的目标(如非肽和带有大量修饰的肽)来提高 MS/MS 谱的利用率,这些目标被其“非肽”过量与标称质量比标记。与数据依赖方法相比,在某些样本中,IMMA 将鉴定的蛋白质数量增加了约 20-40%。当“成本”(例如,分析时间)开始超过“收益”(例如,鉴定的蛋白质数量)时,IMMA 会在操作员定义的点终止 MS/MS 运行,而无需事先了解样本的内容和复杂性。为了便于分析密切相关的样本,目前正在开发 IMMA 的包含列表功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验