Dipartimento di Chimica Fisica ed Elettrochimica, Università degli Studi di Milano, Milano, Italy.
J Phys Chem A. 2011 Nov 17;115(45):12864-78. doi: 10.1021/jp204000d. Epub 2011 Jul 15.
The source function (SF) introduced in late 90s by Bader and Gatti quantifies the influence of each atom in a system in determining the amount of electron density at a given point, regardless of the atom's remote or close location with respect to the point. The SF may thus be attractive for studying directly in the real space somewhat elusive molecular properties, such as "electron conjugation" and "aromaticity", that lack rigorous definitions as they are not directly associated to quantum-mechanical observables. In this work, the results of a preliminary test aimed at understanding whether the SF descriptor is capable to reveal electron delocalization effects are corroborated by further examination of the previously investigated benzene, 1,3-cyclohexadiene, and cyclohexene series and by extending the analysis to some benchmark organic systems with different unsaturated bond patterns. The SF can actually reveal, order, and quantify π-electron delocalization effects for formal double, single conjugated, and allylic bonds, in terms of the influence of distant atoms on the electron density at given bond critical points. In polycyclic aromatic hydrocarbons, the SF neatly reveals the mutual influence of the benzenoid subunits. In naphthalene it provides a rationale for the changes observed in the local aromatic character of one ring when the other is partially hydrogenated. The SF analysis describes instead biphenyl as made up by two weakly interacting benzene rings, only slightly perturbed by the combination of mutual steric and electronic effects. Eventually, a new SF-based indicator of local aromaticity is introduced, which shows excellent correlation with the aromatic index developed by Matta and Hernández-Trujillo, based on the delocalization indices. At variance with this latter and other commonly employed quantum-mechanical (local) aromaticity descriptors, the SF-based indicator does not require the knowledge of the pair density, nor the system wave function, being therefore promising for applications to experimentally derived charge density distributions.
源函数(Source Function,SF)是由 Bader 和 Gatti 在 90 年代末引入的,它量化了每个原子在确定给定点处电子密度量方面的影响,而与该原子相对于该点的远程或近距离位置无关。因此,SF 可能对于直接在实空间中研究某些难以捉摸的分子性质(如“电子共轭”和“芳香性”)很有吸引力,因为这些性质缺乏严格的定义,因为它们与量子力学可观察量没有直接关联。在这项工作中,通过进一步研究之前研究过的苯、1,3-环己二烯和环己烯系列,并将分析扩展到一些具有不同不饱和键模式的基准有机体系,验证了 SF 描述符是否能够揭示电子离域效应的初步测试结果。SF 实际上可以揭示、排序和量化形式双键、单共轭和烯丙基键的π 电子离域效应,以及远程原子对给定键临界点处电子密度的影响。在多环芳烃中,SF 整齐地揭示了苯环亚基之间的相互影响。在萘中,它为观察到一个环的局部芳香性质发生变化时另一个环部分氢化时提供了依据。SF 分析将联苯描述为由两个相互作用较弱的苯环组成,仅受到相互空间和电子效应的组合的轻微干扰。最终,引入了一种基于 SF 的局部芳香性新指标,它与基于离域指数的 Matta 和 Hernández-Trujillo 开发的芳香指数具有极好的相关性。与后者和其他常用的量子力学(局部)芳香性描述符不同,基于 SF 的指标不需要知道对密度,也不需要系统波函数,因此对于应用于实验得出的电荷密度分布具有很大的应用前景。