Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan.
J Am Chem Soc. 2011 Aug 10;133(31):12220-8. doi: 10.1021/ja204422r. Epub 2011 Jul 18.
Catalysts hold promise as tools for chemical protein modification. However, the application of catalysts or catalyst-mediated reactions to proteins has only recently begun to be addressed, mainly in in vitro systems. By radically improving the affinity-guided DMAP (4-dimethylaminopyridine) (AGD) catalysts that we previously reported (Koshi, Y.; Nakata, E.; Miyagawa, M.; Tsukiji, S.; Ogawa, T.; Hamachi, I. J. Am. Chem. Soc. 2008, 130, 245.), here we have developed a new organocatalyst-based approach that allows specific chemical acylation of a receptor protein on the surface of live cells. The catalysts consist of a set of 'multivalent' DMAP groups (the acyl transfer catalyst) fused to a ligand specific to the target protein. It was clearly demonstrated by in vitro experiments that the catalyst multivalency enables remarkable enhancement of protein acylation efficiency in the labeling of three different proteins: congerin II, a Src homology 2 (SH2) domain, and FKBP12. Using a multivalent AGD catalyst and optimized acyl donors containing a chosen probe, we successfully achieved selective chemical labeling of bradykinin B(2) receptor (B(2)R), a G-protein coupled receptor, on the live cell-surface. Furthermore, the present tool allowed us to construct a membrane protein (B(2)R)-based fluorescent biosensor, the fluorescence of which is enhanced (tuned on) in response to the antagonist ligand binding. The biosensor should be applicable to rapid and quantitative screening and assay of potent drug candidates in the cellular context. The design concept of the affinity-guided, multivalent catalysts should facilitate further development of diverse catalyst-based protein modification tools, providing new opportunities for organic chemistry in biological research.
催化剂有望成为化学蛋白质修饰的工具。然而,催化剂或催化剂介导的反应在蛋白质中的应用直到最近才开始得到解决,主要是在体外系统中。通过对我们之前报道的激进改进的亲和引导的 4-二甲氨基吡啶(AGD)催化剂(Koshi,Y.;Nakata,E.;Miyagawa,M.;Tsukiji,S.;Ogawa,T.;Hamachi,I. J. Am. Chem. Soc. 2008,130,245.),我们在这里开发了一种新的基于有机催化剂的方法,该方法允许在活细胞表面的受体蛋白质上进行特定的化学酰化。催化剂由一组“多价”的 DMAP 基团(酰基转移催化剂)与特定于靶蛋白的配体融合而成。通过体外实验清楚地表明,催化剂的多价性能够显著提高三种不同蛋白质(congerin II、Src 同源 2(SH2)结构域和 FKBP12)的蛋白质酰化效率。使用多价 AGD 催化剂和优化的含有所选探针的酰基供体,我们成功地实现了活细胞表面上缓激肽 B(2)受体(B(2)R),一种 G 蛋白偶联受体的选择性化学标记。此外,本工具允许我们构建基于膜蛋白(B(2)R)的荧光生物传感器,其荧光在拮抗剂配体结合时增强(开启)。该生物传感器应该适用于在细胞环境中快速定量筛选和测定有效的候选药物。亲和引导的多价催化剂的设计概念应有助于进一步开发各种基于催化剂的蛋白质修饰工具,为生物研究中的有机化学提供新的机会。