University of New South Wales, Australia.
Artif Life. 2011 Fall;17(4):263-79. doi: 10.1162/artl_a_00038. Epub 2011 Jul 15.
Understanding complex networks in the real world is a nontrivial task. In the study of community structures we normally encounter several examples of these networks, which makes any statistical inferencing a challenging endeavor. Researchers resort to computer-generated networks that resemble networks encountered in the real world as a means to generate many networks with different sizes, while maintaining the real-world characteristics of interest. The generation of networks that resemble the real world turns out in itself to be a complex search problem. We present a new rewiring algorithm for the generation of networks with unique characteristics that combine the scale-free effects and community structures encountered in the real world. The algorithm is inspired by social interactions in the real world, whereby people tend to connect locally while occasionally they connect globally. This local-global coupling turns out to be a powerful characteristics that is required for our proposed rewiring algorithm to generate networks with community structures, power law distributions both in degree and in community size, positive assortative mixing by degree, and the rich-club phenomenon.
理解现实世界中的复杂网络是一项艰巨的任务。在社区结构的研究中,我们通常会遇到这些网络的几个例子,这使得任何统计推断都成为一项具有挑战性的工作。研究人员求助于计算机生成的网络,这些网络类似于现实世界中遇到的网络,作为生成具有不同大小的许多网络的一种手段,同时保持感兴趣的现实世界特征。生成类似于现实世界的网络本身就是一个复杂的搜索问题。我们提出了一种新的重连算法,用于生成具有独特特征的网络,这些特征结合了现实世界中遇到的无标度效应和社区结构。该算法的灵感来自现实世界中的社交互动,人们倾向于局部连接,而偶尔也会全局连接。这种局部-全局耦合是我们提出的重连算法生成具有社区结构、度和社区大小的幂律分布、按度正配分混合以及富团现象的网络所必需的强大特征。