Suppr超能文献

大规模语义网络的图论建模

Graph theoretic modeling of large-scale semantic networks.

作者信息

Bales Michael E, Johnson Stephen B

机构信息

Department of Biomedical Informatics, Columbia University, New York, NY, USA.

出版信息

J Biomed Inform. 2006 Aug;39(4):451-64. doi: 10.1016/j.jbi.2005.10.007. Epub 2005 Dec 15.

Abstract

During the past several years, social network analysis methods have been used to model many complex real-world phenomena, including social networks, transportation networks, and the Internet. Graph theoretic methods, based on an elegant representation of entities and relationships, have been used in computational biology to study biological networks; however they have not yet been adopted widely by the greater informatics community. The graphs produced are generally large, sparse, and complex, and share common global topological properties. In this review of research (1998-2005) on large-scale semantic networks, we used a tailored search strategy to identify articles involving both a graph theoretic perspective and semantic information. Thirty-one relevant articles were retrieved. The majority (28, 90.3%) involved an investigation of a real-world network. These included corpora, thesauri, dictionaries, large computer programs, biological neuronal networks, word association networks, and files on the Internet. Twenty-two of the 28 (78.6%) involved a graph comprised of words or phrases. Fifteen of the 28 (53.6%) mentioned evidence of small-world characteristics in the network investigated. Eleven (39.3%) reported a scale-free topology, which tends to have a similar appearance when examined at varying scales. The results of this review indicate that networks generated from natural language have topological properties common to other natural phenomena. It has not yet been determined whether artificial human-curated terminology systems in biomedicine share these properties. Large network analysis methods have potential application in a variety of areas of informatics, such as in development of controlled vocabularies and for characterizing a given domain.

摘要

在过去几年中,社会网络分析方法已被用于对许多复杂的现实世界现象进行建模,包括社会网络、交通网络和互联网。基于实体和关系的简洁表示的图论方法已被用于计算生物学中研究生物网络;然而,它们尚未被更广泛的信息学社区广泛采用。所生成的图通常很大、很稀疏且很复杂,并具有共同的全局拓扑特性。在这篇对1998年至2005年关于大规模语义网络的研究综述中,我们使用了一种定制的搜索策略来识别涉及图论视角和语义信息的文章。共检索到31篇相关文章。大多数(28篇,90.3%)涉及对现实世界网络的研究。这些包括语料库、叙词表、词典、大型计算机程序、生物神经网络、词关联网络和互联网上的文件。28篇中的22篇(78.6%)涉及由单词或短语组成的图。28篇中的15篇(53.6%)提到在所研究的网络中存在小世界特征的证据。11篇(39.3%)报告了无标度拓扑,当在不同尺度上进行检查时,其往往具有相似的外观。这篇综述的结果表明,由自然语言生成得网络具有与其他自然现象相同的拓扑特性。生物医学中人工编制的术语系统是否具有这些特性尚未确定。大型网络分析方法在信息学的各个领域都有潜在应用,例如在受控词汇表的开发以及对给定领域进行特征描述方面。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验