Ceramic Technological Institute, BHEL, Malleswaram Complex, Bangalore 560012, India.
Nanoscale Res Lett. 2011 Jul 16;6(1):456. doi: 10.1186/1556-276X-6-456.
Ultrahigh performance cooling is one of the important needs of many industries. However, low thermal conductivity is a primary limitation in developing energy-efficient heat transfer fluids that are required for cooling purposes. Nanofluids are engineered by suspending nanoparticles with average sizes below 100 nm in heat transfer fluids such as water, oil, diesel, ethylene glycol, etc. Innovative heat transfer fluids are produced by suspending metallic or nonmetallic nanometer-sized solid particles. Experiments have shown that nanofluids have substantial higher thermal conductivities compared to the base fluids. These suspended nanoparticles can change the transport and thermal properties of the base fluid. As can be seen from the literature, extensive research has been carried out in alumina-water and CuO-water systems besides few reports in Cu-water-, TiO2-, zirconia-, diamond-, SiC-, Fe3O4-, Ag-, Au-, and CNT-based systems. The aim of this review is to summarize recent developments in research on the stability of nanofluids, enhancement of thermal conductivities, viscosity, and heat transfer characteristics of alumina (Al2O3)-based nanofluids. The Al2O3 nanoparticles varied in the range of 13 to 302 nm to prepare nanofluids, and the observed enhancement in the thermal conductivity is 2% to 36%.
超高性能冷却技术是许多行业的重要需求之一。然而,低导热系数是开发用于冷却目的的高效节能传热流体的主要限制因素。纳米流体是通过将平均尺寸小于 100nm 的纳米颗粒悬浮在传热流体(如水、油、柴油、乙二醇等)中而设计的。通过悬浮金属或非金属纳米级固体颗粒,可以生产出创新性的传热流体。实验表明,纳米流体的导热系数比基液高得多。这些悬浮的纳米颗粒可以改变基液的传输和热性能。从文献中可以看出,除了少数关于 Cu-水、TiO2-、氧化锆-、金刚石-、SiC-、Fe3O4-、Ag-、Au-和 CNT 基系统的报告外,已经在氧化铝-水和 CuO-水系统中进行了广泛的研究。本文综述的目的是总结纳米流体稳定性、氧化铝(Al2O3)基纳米流体导热系数、粘度和传热特性增强方面的最新研究进展。纳米颗粒的粒径范围为 13 至 302nm,观察到的导热系数提高了 2%至 36%。