Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
J Mol Biol. 2011 Jul 22;410(4):726-44. doi: 10.1016/j.jmb.2011.03.053.
Human immunodeficiency virus type 1 (HIV-1) protease (PR) permits viral maturation by processing the gag and gag-pro-pol polyproteins. HIV-1 PR inhibitors (PIs) are used in combination antiviral therapy but the emergence of drug resistance has limited their efficacy. The rapid evolution of HIV-1 necessitates consideration of drug resistance in novel drug design. Drug-resistant HIV-1 PR variants no longer inhibited efficiently, continue to hydrolyze the natural viral substrates. Though highly diverse in sequence, the HIV-1 PR substrates bind in a conserved three-dimensional shape we termed the substrate envelope. Earlier, we showed that resistance mutations arise where PIs protrude beyond the substrate envelope, because these regions are crucial for drug binding but not for substrate recognition. We extend this model by considering the role of protein dynamics in the interaction of HIV-1 PR with its substrates. We simulated the molecular dynamics of seven PR-substrate complexes to estimate the conformational flexibility of the bound substrates. Interdependence of substrate-protease interactions might compensate for variations in cleavage-site sequences and explain how a diverse set of sequences are recognized as substrates by the same enzyme. This diversity might be essential for regulating sequential processing of substrates. We define a dynamic substrate envelope as a more accurate representation of PR-substrate interactions. This dynamic substrate envelope, described by a probability distribution function, is a powerful tool for drug design efforts targeting ensembles of resistant HIV-1 PR variants with the aim of developing drugs that are less susceptible to resistance.
人类免疫缺陷病毒 1 型(HIV-1)蛋白酶(PR)通过处理 gag 和 gag-pro-pol 多聚蛋白来允许病毒成熟。HIV-1 PR 抑制剂(PIs)被用于联合抗病毒治疗,但耐药性的出现限制了它们的疗效。HIV-1 的快速进化需要在新药设计中考虑耐药性。耐药性 HIV-1 PR 变体不再有效抑制,继续水解天然病毒底物。尽管 HIV-1 PR 的序列高度多样化,但它们的底物结合在一个保守的三维形状中,我们称之为底物信封。早些时候,我们表明,PI 突出于底物信封之外的地方会出现耐药性突变,因为这些区域对于药物结合至关重要,但对于底物识别不重要。我们通过考虑 HIV-1 PR 与其底物相互作用中的蛋白质动力学来扩展这个模型。我们模拟了七个 PR-底物复合物的分子动力学,以估计结合底物的构象灵活性。底物-蛋白酶相互作用的相互依赖性可能会补偿切割位点序列的变化,并解释为什么同一酶可以识别不同的序列作为底物。这种多样性可能对于调节底物的顺序加工至关重要。我们将动态底物信封定义为 PR-底物相互作用的更准确表示。这个动态底物信封由概率分布函数描述,是一种针对具有耐药性 HIV-1 PR 变体的药物设计的有力工具,旨在开发对耐药性不太敏感的药物。