Suppr超能文献

一种基于 CT 结肠成像中息肉特异性容积特征的计算机辅助息肉检测的直接方法。

A straightforward approach to computer-aided polyp detection using a polyp-specific volumetric feature in CT colonography.

机构信息

Interdisciplinary Program in Radiation Applied Life Science, Seoul National University College of Medicine, Seoul 110-799, South Korea.

出版信息

Comput Biol Med. 2011 Sep;41(9):790-801. doi: 10.1016/j.compbiomed.2011.06.015. Epub 2011 Jul 18.

Abstract

This study presents a straightforward approach to computer-aided polyp detection and explores its advantages and future potential. A straightforward computer-aided polyp detection (CAD) scheme was developed that consisted of colon wall segmentation, a polyp-specific volumetric filter, and the counting and thresholding of cluster volume sizes. 65 patients had undergone the bowel cleaning scheme without fecal tagging and the optical colonoscopy (OC) and CT colonography (CTC) were performed. The polyp sizes determined by OC were used as reference measurements. The CTC dataset with 103 polyps were divided into training and test datasets. After tuning for the optimal parameter settings, the per-polyp sensitivities of the developed CAD scheme for clinically relevant polyps (≥ 6 mm) were 100% at 8.5 false positives (FPs)/patient using the training dataset, and 93.3% at 7.7 FPs/patient using the test dataset. The developed CAD scheme was found to have a relatively high detection performance, easily optimized parameter settings, and an easily understood internal operation.

摘要

本研究提出了一种简单直接的计算机辅助息肉检测方法,并探讨了其优势和未来的潜力。开发了一种简单直接的计算机辅助息肉检测(CAD)方案,该方案包括结肠壁分割、息肉特异性体积滤波器以及簇体积大小的计数和阈值处理。65 名患者接受了无粪便标记的肠道清洁方案和光学结肠镜检查(OC)和 CT 结肠成像(CTC)。OC 确定的息肉大小用作参考测量值。将 103 个息肉的 CTC 数据集分为训练数据集和测试数据集。在对最佳参数设置进行调整后,使用训练数据集,开发的 CAD 方案对临床相关息肉(≥6 毫米)的每息肉灵敏度为 100%,在 7.7 FPs/患者时为 93.3%。研究发现,开发的 CAD 方案具有较高的检测性能,易于优化参数设置,且内部操作易于理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验