Suppr超能文献

医学影像学研究中的数据采集与分析系统方法。

A Systematic Approach of Data Collection and Analysis in Medical Imaging Research.

机构信息

Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India.

Department of Information Science and Engineering, NIE Institute of Technology, Mysuru, 570008, India.

出版信息

Asian Pac J Cancer Prev. 2021 Feb 1;22(2):537-546. doi: 10.31557/APJCP.2021.22.2.537.

Abstract

BACKGROUND

Obtaining the right image dataset for the medical image research systematically is a tedious task. Anatomy segmentation is the key step before extracting the radiomic features from these images.

OBJECTIVE

The purpose of the study was to segment the 3D colon from CT images and to measure the smaller polyps using image processing techniques. This require huge number of samples for statistical analysis. Our objective was to systematically classify and arrange the dataset based on the parameters of interest so that the empirical testing becomes easier in medical image research.

MATERIALS AND METHODS

This paper discusses a systematic approach of data collection and analysis before using it for empirical testing. In this research the image were considered from National Cancer Institute (NCI). TCIA from NCI has a vast collection of diagnostic quality images for the research community. These datasets were classified before empirical testing of the research objectives. The images in the TCIA collection were acquired as per the standard protocol defined by the American College of Radiology. Patients in the age group of 50-80 years were involved in various clinical trials (multicenter). The dataset collection has more than 10 billion of DICOM images of various anatomies. In this study, the number of samples considered for empirical testing was 300 (n) acquired from both supine and prone positions. The datasets were classified based on the parameters of interest. The classified dataset makes the dataset selection easier during empirical testing. The images were validated for the data completeness as per the DICOM standard of the 2020b version. A case study of CT Colonography dataset is discussed.

CONCLUSION

With this systematic approach of data collection and classification, analysis will be become more easier during empirical testing.
.

摘要

背景

为医学图像研究系统地获取正确的图像数据集是一项繁琐的任务。解剖分割是从这些图像中提取放射组学特征的关键步骤。

目的

本研究的目的是从 CT 图像中分割 3D 结肠,并使用图像处理技术测量较小的息肉。这需要大量的样本进行统计分析。我们的目标是根据感兴趣的参数系统地对数据集进行分类和整理,以便在医学图像研究中更容易进行经验测试。

材料和方法

本文讨论了在将数据用于经验测试之前进行数据收集和分析的系统方法。在这项研究中,图像来自国家癌症研究所(NCI)。NCI 的 TCIA 拥有大量可供研究社区使用的诊断质量图像。在对研究目标进行经验测试之前,对这些数据集进行了分类。TCIA 集合中的图像是根据美国放射学院定义的标准协议获取的。年龄在 50-80 岁之间的患者参与了各种临床试验(多中心)。该数据集收集了超过 100 亿张各种解剖结构的 DICOM 图像。在这项研究中,用于经验测试的样本数量为 300(n),来自仰卧和俯卧位。根据感兴趣的参数对数据集进行分类。分类数据集使在经验测试期间更容易选择数据集。根据 2020b 版本的 DICOM 标准验证图像的数据完整性。讨论了 CT 结肠成像数据集的案例研究。

结论

通过这种系统的数据收集和分类方法,在经验测试期间分析将变得更加容易。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c41/8190353/f3478aec8a44/APJCP-22-537-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验