Suppr超能文献

运动准备的动力系统观点:对神经假体系统设计的启示。

A dynamical systems view of motor preparation: implications for neural prosthetic system design.

机构信息

Department of Electrical Engineering, Stanford University, Stanford, California, USA.

出版信息

Prog Brain Res. 2011;192:33-58. doi: 10.1016/B978-0-444-53355-5.00003-8.

Abstract

Neural prosthetic systems aim to help disabled patients suffering from a range of neurological injuries and disease by using neural activity from the brain to directly control assistive devices. This approach in effect bypasses the dysfunctional neural circuitry, such as an injured spinal cord. To do so, neural prostheses depend critically on a scientific understanding of the neural activity that drives them. We review here several recent studies aimed at understanding the neural processes in premotor cortex that precede arm movements and lead to the initiation of movement. These studies were motivated by hypotheses and predictions conceived of within a dynamical systems perspective. This perspective concentrates on describing the neural state using as few degrees of freedom as possible and on inferring the rules that govern the motion of that neural state. Although quite general, this perspective has led to a number of specific predictions that have been addressed experimentally. It is hoped that the resulting picture of the dynamical role of preparatory and movement-related neural activity will be particularly helpful to the development of neural prostheses, which can themselves be viewed as dynamical systems under the control of the larger dynamical system to which they are attached.

摘要

神经假体系统旨在通过利用大脑的神经活动直接控制辅助设备,帮助患有一系列神经损伤和疾病的残疾患者。这种方法实际上绕过了功能失调的神经回路,例如受伤的脊髓。为此,神经假体严重依赖于对驱动它们的神经活动的科学理解。我们在这里回顾了几项旨在理解运动前皮层中神经过程的最新研究,这些过程先于手臂运动并导致运动的开始。这些研究的动机是基于动态系统观点中提出的假设和预测。该观点专注于使用尽可能少的自由度来描述神经状态,并推断控制该神经状态运动的规则。尽管非常通用,但这一观点已经产生了许多已通过实验解决的具体预测。希望与预备和与运动相关的神经活动的动态作用相关的结果图片将对神经假体的发展特别有帮助,神经假体本身可以被视为更大的动态系统控制下的动态系统,它们与之相连。

相似文献

1
A dynamical systems view of motor preparation: implications for neural prosthetic system design.
Prog Brain Res. 2011;192:33-58. doi: 10.1016/B978-0-444-53355-5.00003-8.
2
Neural Population Dynamics during Reaching Are Better Explained by a Dynamical System than Representational Tuning.
PLoS Comput Biol. 2016 Nov 4;12(11):e1005175. doi: 10.1371/journal.pcbi.1005175. eCollection 2016 Nov.
3
Single-trial neural correlates of arm movement preparation.
Neuron. 2011 Aug 11;71(3):555-64. doi: 10.1016/j.neuron.2011.05.047.
4
Heterogeneous neural coding of corrective movements in motor cortex.
Front Neural Circuits. 2013 Apr 4;7:51. doi: 10.3389/fncir.2013.00051. eCollection 2013.
5
Coordinate system representations of movement direction in the premotor cortex.
Exp Brain Res. 2007 Feb;176(4):652-7. doi: 10.1007/s00221-006-0818-7. Epub 2006 Dec 19.
6
Cortical control of arm movements: a dynamical systems perspective.
Annu Rev Neurosci. 2013 Jul 8;36:337-59. doi: 10.1146/annurev-neuro-062111-150509. Epub 2013 May 29.
7
Delay of movement caused by disruption of cortical preparatory activity.
J Neurophysiol. 2007 Jan;97(1):348-59. doi: 10.1152/jn.00808.2006. Epub 2006 Sep 27.
8
Redundant information encoding in primary motor cortex during natural and prosthetic motor control.
J Comput Neurosci. 2012 Jun;32(3):555-61. doi: 10.1007/s10827-011-0369-1. Epub 2011 Nov 1.
9
Biological pattern generation: the cellular and computational logic of networks in motion.
Neuron. 2006 Dec 7;52(5):751-66. doi: 10.1016/j.neuron.2006.11.008.
10
Selective Suppression of Local Circuits during Movement Preparation in the Mouse Motor Cortex.
Cell Rep. 2017 Mar 14;18(11):2676-2686. doi: 10.1016/j.celrep.2017.02.043.

引用本文的文献

1
Probing for intentions: The early readiness potential does not reflect awareness of motor preparation.
Imaging Neurosci (Camb). 2025 Feb 7;3. doi: 10.1162/imag_a_00465. eCollection 2025.
2
Beta-band desynchronization in the human hippocampus during movement preparation in a delayed reach task.
Exp Brain Res. 2025 Jun 23;243(7):180. doi: 10.1007/s00221-025-07124-6.
4
Koopman-based linearization of preparatory EEG dynamics in Parkinson's disease during galvanic vestibular stimulation.
Front Hum Neurosci. 2025 May 14;19:1566566. doi: 10.3389/fnhum.2025.1566566. eCollection 2025.
5
Augmenting flexibility: mutual inhibition between inhibitory neurons expands functional diversity.
iScience. 2025 Jan 1;28(2):111718. doi: 10.1016/j.isci.2024.111718. eCollection 2025 Feb 21.
6
Metastable dynamics of neural circuits and networks.
Appl Phys Rev. 2022 Mar;9(1):011313. doi: 10.1063/5.0062603.
7
Preparing to move: Setting initial conditions to simplify interactions with complex objects.
PLoS Comput Biol. 2021 Dec 17;17(12):e1009597. doi: 10.1371/journal.pcbi.1009597. eCollection 2021 Dec.
8
Cortical Control of Virtual Self-Motion Using Task-Specific Subspaces.
J Neurosci. 2022 Jan 12;42(2):220-239. doi: 10.1523/JNEUROSCI.2687-20.2021. Epub 2021 Oct 29.
9
Network dynamics underlying OFF responses in the auditory cortex.
Elife. 2021 Mar 24;10:e53151. doi: 10.7554/eLife.53151.
10
Introductory gestures before songbird vocal displays are shaped by learning and biological predispositions.
Proc Biol Sci. 2021 Jan 27;288(1943):20202796. doi: 10.1098/rspb.2020.2796. Epub 2021 Jan 20.

本文引用的文献

1
Single-trial neural correlates of arm movement preparation.
Neuron. 2011 Aug 11;71(3):555-64. doi: 10.1016/j.neuron.2011.05.047.
2
Long-term stability of neural prosthetic control signals from silicon cortical arrays in rhesus macaque motor cortex.
J Neural Eng. 2011 Aug;8(4):045005. doi: 10.1088/1741-2560/8/4/045005. Epub 2011 Jul 20.
4
An optogenetic toolbox designed for primates.
Nat Neurosci. 2011 Mar;14(3):387-97. doi: 10.1038/nn.2749. Epub 2011 Jan 30.
5
Challenges and opportunities for next-generation intracortically based neural prostheses.
IEEE Trans Biomed Eng. 2011 Jul;58(7):1891-9. doi: 10.1109/TBME.2011.2107553. Epub 2011 Jan 20.
6
Learning to move machines with the mind.
Trends Neurosci. 2011 Feb;34(2):61-75. doi: 10.1016/j.tins.2010.11.003. Epub 2010 Dec 20.
7
Low-dimensional neural features predict muscle EMG signals.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:6027-33. doi: 10.1109/IEMBS.2010.5627604.
8
Cortical preparatory activity: representation of movement or first cog in a dynamical machine?
Neuron. 2010 Nov 4;68(3):387-400. doi: 10.1016/j.neuron.2010.09.015.
9
A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces.
J Neurophysiol. 2011 Apr;105(4):1932-49. doi: 10.1152/jn.00503.2010. Epub 2010 Oct 13.
10
Autonomous head-mounted electrophysiology systems for freely behaving primates.
Curr Opin Neurobiol. 2010 Oct;20(5):676-86. doi: 10.1016/j.conb.2010.06.007. Epub 2010 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验