Suppr超能文献

刺激驱动的感觉运动行为和神经元功能连接变化在脑机接口和神经康复中的应用。

Stimulus-driven changes in sensorimotor behavior and neuronal functional connectivity application to brain-machine interfaces and neurorehabilitation.

机构信息

Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.

出版信息

Prog Brain Res. 2011;192:83-102. doi: 10.1016/B978-0-444-53355-5.00006-3.

Abstract

Normal brain function requires constant adaptation as an organism interacts with the environment and learns to associate important sensory stimuli with appropriate motor actions. Neurological disorders may disrupt these learned associations, potentially requiring new functional pathways to be formed to replace the lost function. As a consequence, neural plasticity is a critical aspect of both normal brain function as well as the response to neurological injury. A brain-machine interface (BMI) represents a unique adaptive challenge to the nervous system. Efferent BMIs have been developed, which harness signals recorded from a tiny proportion of the motor cortex (M1) to effect control of an external device. There is also interest in the development of an afferent BMI that would supply information directly to the brain (e.g., the somatosensory cortex-S1) via electrical stimulation. If a bidirectional BMI that combined these interfaces were to be successful, new functional pathways would be necessary between the artificial inputs and outputs. Indeed, stimulation of S1 that is contingent upon the consequences of motor command signals recorded from M1 might form the basis for artificial Hebbian associations not unlike those driving learning in the normal brain. In this chapter, we review recent developments in both efferent and afferent BMIs, as well as experimental attempts to understand and mimic the Hebbian processes that give rise to plastic changes within the cortex. We have used a rat model to develop the computational and experimental tools necessary to describe changes in the way small networks of sensorimotor neurons interact and process information. We show that by repetitively pairing the recorded spikes of one neuron with electrical stimulation of another or by repetitively pairing electrical stimulation of two neurons, we can strengthen the inferred functional connection between the pair of neurons. We have also used the dual-stimulation protocol to enhance the ability of a trained rat to detect intracortical microstimulation behavioral cues. These results provide an important proof of concept, demonstrating the feasibility of Hebbian conditioning protocols to alter information flow in the brain. In addition to their possible application to BMI research, techniques like this may improve the efficacy of traditional rehabilitation for patients with neurologic injury.

摘要

正常的大脑功能需要不断适应,因为生物体与环境相互作用并学会将重要的感觉刺激与适当的运动动作联系起来。神经障碍可能会破坏这些已习得的关联,从而需要形成新的功能途径来替代丧失的功能。因此,神经可塑性是正常大脑功能以及对神经损伤反应的关键方面。脑机接口(BMI)代表了神经系统的独特适应性挑战。已经开发出传出 BMI,它利用从运动皮层(M1)的一小部分记录的信号来控制外部设备。人们也对开发传入 BMI 感兴趣,该 BMI 可以通过电刺激直接向大脑(例如,躯体感觉皮层-S1)提供信息。如果将结合这些接口的双向 BMI 取得成功,那么在人工输入和输出之间将需要新的功能途径。实际上,根据从 M1 记录的运动命令信号的结果刺激 S1,可能会形成类似于驱动正常大脑学习的人工赫布关联的基础。在本章中,我们回顾了传出和传入 BMI 的最新发展,以及尝试理解和模仿赫布过程的实验,这些过程导致皮层内发生塑性变化。我们使用大鼠模型开发了必要的计算和实验工具,以描述感觉运动神经元小网络相互作用和处理信息的方式的变化。我们表明,通过重复将一个神经元的记录尖峰与另一个神经元的电刺激配对,或者通过重复将两个神经元的电刺激配对,我们可以增强对神经元对的推断功能连接。我们还使用双重刺激方案来增强受过训练的大鼠检测皮层内微刺激行为线索的能力。这些结果提供了一个重要的概念证明,证明了赫布条件作用方案改变大脑信息流的可行性。除了它们在 BMI 研究中的可能应用外,此类技术还可能提高传统康复治疗神经损伤患者的效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验