Suppr超能文献

GABAA 受体结合口袋中的三个精氨酸在激动剂与拮抗剂结合复合物的形成和稳定中具有不同的作用。

Three arginines in the GABAA receptor binding pocket have distinct roles in the formation and stability of agonist- versus antagonist-bound complexes.

机构信息

Department of Physiology, University of Wisconsin-Madison, Madison, WI 53706, USA.

出版信息

Mol Pharmacol. 2011 Oct;80(4):647-56. doi: 10.1124/mol.111.072033. Epub 2011 Jul 15.

Abstract

Binding of the agonist GABA to the GABA(A) receptor causes channel gating, whereas competitive antagonists that bind at the same site do not. The details of ligand binding are not well understood, including which residues interact directly with ligands, maintain the structure of the binding pocket, or transduce the action of binding into opening of the ion channel gate. Recent work suggests that the amine group of the GABA molecule may form a cation-π bond with residues in a highly conserved "aromatic box" within the binding pocket. Although interactions with the carboxyl group of GABA remain unknown, three positively charged arginines (α(1)Arg67, α(1)Arg132, and β(2)Arg207) just outside of the aromatic box are likely candidates. To explore their roles in ligand binding, we individually mutated these arginines to alanine and measured the effects on microscopic ligand binding/unbinding rates and channel gating. The mutations α(1)R67A or β(2)R207A slowed agonist binding and sped unbinding with little effect on gating, demonstrating that these arginines are critical for both formation and stability of the agonist-bound complex. In addition, α(1)R67A sped binding of the antagonist 2-(3-carboxypropyl)-3-amino-6-(4 methoxyphenyl)pyridazinium bromide (SR-95531), indicating that this arginine poses a barrier to formation of the antagonist-bound complex. In contrast, β(2)R207A and α(1)R132A sped antagonist unbinding, indicating that these arginines stabilize the antagonist-bound state. α(1)R132A also conferred a new long-lived open state, indicating that this arginine influences the channel gate. Thus, each of these arginines plays a unique role in determining interactions with agonists versus antagonists and with the channel gate.

摘要

激动剂 GABA 与 GABA(A) 受体结合会引起通道门控,而在同一结合位点结合的竞争性拮抗剂则不会。配体结合的细节尚不清楚,包括哪些残基与配体直接相互作用、维持结合口袋的结构或将结合的作用转导为离子通道门的打开。最近的工作表明,GABA 分子的氨基可能与结合口袋中高度保守的“芳香盒”内的残基形成阳离子-π 键。尽管 GABA 的羧基与配体的相互作用仍然未知,但三个带正电荷的精氨酸(α(1)Arg67、α(1)Arg132 和 β(2)Arg207)位于芳香盒之外,可能是候选者。为了探索它们在配体结合中的作用,我们分别将这些精氨酸突变为丙氨酸,并测量了它们对微观配体结合/解吸速率和通道门控的影响。突变 α(1)R67A 或 β(2)R207A 减缓激动剂结合并加速解吸,对门控几乎没有影响,表明这些精氨酸对激动剂结合复合物的形成和稳定性都至关重要。此外,α(1)R67A 加速了拮抗剂 2-(3-羧丙基)-3-氨基-6-(4-甲氧基苯基)哒嗪翁溴化物(SR-95531)的结合,表明该精氨酸对拮抗剂结合复合物的形成构成了障碍。相比之下,β(2)R207A 和 α(1)R132A 加速了拮抗剂的解吸,表明这些精氨酸稳定了拮抗剂结合状态。α(1)R132A 还赋予了一种新的长寿命开放状态,表明该精氨酸影响通道门。因此,这些精氨酸中的每一个都在确定与激动剂与拮抗剂以及与通道门的相互作用方面发挥着独特的作用。

相似文献

5
Molecular modeling of ligand-receptor interactions in GABA C receptor.γ-氨基丁酸C型受体中配体-受体相互作用的分子模拟
J Mol Graph Model. 2009 Apr;27(7):813-21. doi: 10.1016/j.jmgm.2008.12.004. Epub 2008 Dec 24.

引用本文的文献

5
Structure of a human synaptic GABA receptor.人类突触 GABA 受体的结构。
Nature. 2018 Jul;559(7712):67-72. doi: 10.1038/s41586-018-0255-3. Epub 2018 Jun 27.

本文引用的文献

2
Locating GABA in GABA receptor binding sites.定位 GABA 于 GABA 受体结合部位。
Biochem Soc Trans. 2009 Dec;37(Pt 6):1343-6. doi: 10.1042/BST0371343.
9
Homology model of the GABAA receptor examined using Brownian dynamics.使用布朗动力学研究的GABAA受体同源模型。
Biophys J. 2005 May;88(5):3286-99. doi: 10.1529/biophysj.104.051664. Epub 2005 Mar 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验