Suppr超能文献

针对个体化治疗策略的多阶段随机试验的高效设计和推理。

Efficient design and inference for multistage randomized trials of individualized treatment policies.

机构信息

Frontier Science Technology and Research Foundation, 900 Commonwealth Avenue, Boston, MA 02215, USA.

出版信息

Biostatistics. 2012 Jan;13(1):142-52. doi: 10.1093/biostatistics/kxr016. Epub 2011 Jul 16.

Abstract

Clinical demand for individualized "adaptive" treatment policies in diverse fields has spawned development of clinical trial methodology for their experimental evaluation via multistage designs, building upon methods intended for the analysis of naturalistically observed strategies. Because often there is no need to parametrically smooth multistage trial data (in contrast to observational data for adaptive strategies), it is possible to establish direct connections among different methodological approaches. We show by algebraic proof that the maximum likelihood (ML) and optimal semiparametric (SP) estimators of the population mean of the outcome of a treatment policy and its standard error are equal under certain experimental conditions. This result is used to develop a unified and efficient approach to design and inference for multistage trials of policies that adapt treatment according to discrete responses. We derive a sample size formula expressed in terms of a parametric version of the optimal SP population variance. Nonparametric (sample-based) ML estimation performed well in simulation studies, in terms of achieved power, for scenarios most likely to occur in real studies, even though sample sizes were based on the parametric formula. ML outperformed the SP estimator; differences in achieved power predominately reflected differences in their estimates of the population mean (rather than estimated standard errors). Neither methodology could mitigate the potential for overestimated sample sizes when strong nonlinearity was purposely simulated for certain discrete outcomes; however, such departures from linearity may not be an issue for many clinical contexts that make evaluation of competitive treatment policies meaningful.

摘要

临床对个性化“适应性”治疗策略的需求在各个领域不断增长,这促使人们开发了多阶段设计的临床试验方法,以对其进行实验评估,这些方法是基于用于分析自然观察到的策略的方法。因为通常不需要对多阶段试验数据进行参数平滑(与适应性策略的观察数据相反),所以可以在不同的方法之间建立直接联系。我们通过代数证明,在某些实验条件下,治疗策略及其标准误差的结果的总体平均值的最大似然(ML)和最优半参数(SP)估计值相等。该结果用于开发一种统一且有效的方法,用于设计和推断根据离散反应自适应治疗的多阶段试验。我们推导出了一个样本量公式,该公式用最优 SP 总体方差的参数版本表示。在模拟研究中,非参数(基于样本的)ML 估计在实现功效方面表现良好,尤其是在最有可能出现在实际研究中的场景中,即使样本量基于参数公式。ML 优于 SP 估计量;实现功效的差异主要反映了它们对总体平均值的估计(而不是估计的标准误差)的差异。当针对某些离散结果故意模拟强非线性时,两种方法都无法减轻样本量过大的潜在风险;然而,对于许多有意义地评估竞争治疗策略的临床环境来说,这种线性偏差可能不是问题。

相似文献

1
Efficient design and inference for multistage randomized trials of individualized treatment policies.
Biostatistics. 2012 Jan;13(1):142-52. doi: 10.1093/biostatistics/kxr016. Epub 2011 Jul 16.
4
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
6
Enhanced precision in the analysis of randomized trials with ordinal outcomes.
Biometrics. 2016 Jun;72(2):422-31. doi: 10.1111/biom.12450. Epub 2015 Nov 17.
7
On Enrichment Strategies for Biomarker Stratified Clinical Trials.
J Biopharm Stat. 2018;28(2):292-308. doi: 10.1080/10543406.2017.1379532. Epub 2017 Oct 30.
8
Using pilot data to size a two-arm randomized trial to find a nearly optimal personalized treatment strategy.
Stat Med. 2016 Apr 15;35(8):1245-56. doi: 10.1002/sim.6783. Epub 2015 Oct 28.
10
Optimal response-adaptive randomized designs for multi-armed survival trials.
Stat Med. 2011 Oct 30;30(24):2890-910. doi: 10.1002/sim.4331. Epub 2011 Aug 8.

引用本文的文献

2
Designing HIV Vaccine Efficacy Trials in the Context of Highly Effective Non-vaccine Prevention Modalities.
Stat Biosci. 2020 Dec;12(3):468-494. doi: 10.1007/s12561-020-09292-1. Epub 2020 Oct 22.
3
Multitiered Systems of Support, Adaptive Interventions, and SMART Designs.
Except Child. 2021 Oct;88(1):8-25. doi: 10.1177/00144029211024141. Epub 2021 Nov 13.
4
SMARTAR: an R package for designing and analyzing Sequential Multiple Assignment Randomized Trials.
PeerJ. 2021 Jan 11;9:e10559. doi: 10.7717/peerj.10559. eCollection 2021.
6
A gate-keeping test for selecting adaptive interventions under general designs of sequential multiple assignment randomized trials.
Contemp Clin Trials. 2019 Oct;85:105830. doi: 10.1016/j.cct.2019.105830. Epub 2019 Aug 27.
8
Future Directions in the Use of Telemental Health to Improve the Accessibility and Quality of Children's Mental Health Services.
J Child Adolesc Psychopharmacol. 2016 Apr;26(3):296-300. doi: 10.1089/cap.2015.0079. Epub 2016 Feb 9.
9
Design of sequentially randomized trials for testing adaptive treatment strategies.
Stat Med. 2016 Mar 15;35(6):840-58. doi: 10.1002/sim.6747. Epub 2015 Sep 27.
10
Dynamic Treatment Regimes.
Annu Rev Stat Appl. 2014;1:447-464. doi: 10.1146/annurev-statistics-022513-115553.

本文引用的文献

1
Sample size calculations for evaluating treatment policies in multi-stage designs.
Clin Trials. 2010 Dec;7(6):643-52. doi: 10.1177/1740774510376418. Epub 2010 Jul 14.
2
Marginal Mean Models for Dynamic Regimes.
J Am Stat Assoc. 2001 Dec 1;96(456):1410-1423. doi: 10.1198/016214501753382327.
3
Sample size for two-stage studies with maintenance therapy.
Stat Med. 2009 Jul 10;28(15):2028-41. doi: 10.1002/sim.3593.
5
Improving the efficiency of estimation in randomized trials of adaptive treatment strategies.
Clin Trials. 2007;4(4):297-308. doi: 10.1177/1740774507081327.
6
An experimental design for the development of adaptive treatment strategies.
Stat Med. 2005 May 30;24(10):1455-81. doi: 10.1002/sim.2022.
7
Sequenced treatment alternatives to relieve depression (STAR*D): rationale and design.
Control Clin Trials. 2004 Feb;25(1):119-42. doi: 10.1016/s0197-2456(03)00112-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验