Suppr超能文献

动态状态的边际均值模型。

Marginal Mean Models for Dynamic Regimes.

作者信息

Murphy S A, van der Laan M J, Robins J M

出版信息

J Am Stat Assoc. 2001 Dec 1;96(456):1410-1423. doi: 10.1198/016214501753382327.

Abstract

A dynamic treatment regime is a list of rules for how the level of treatment will be tailored through time to an individual's changing severity. In general, individuals who receive the highest level of treatment are the individuals with the greatest severity and need for treatment. Thus there is planned selection of the treatment dose. In addition to the planned selection mandated by the treatment rules, the use of staff judgment results in unplanned selection of the treatment level. Given observational longitudinal data or data in which there is unplanned selection, of the treatment level, the methodology proposed here allows the estimation of a mean response to a dynamic treatment regime under the assumption of sequential randomization.

摘要

动态治疗方案是一系列规则,规定了治疗水平如何随着时间根据个体病情严重程度的变化进行调整。一般来说,接受最高治疗水平的个体是病情最严重且最需要治疗的个体。因此,治疗剂量是经过规划选择的。除了治疗规则规定的规划选择外,工作人员的判断也会导致治疗水平的非规划选择。对于观察性纵向数据或存在治疗水平非规划选择的数据,本文提出的方法允许在序列随机化假设下估计对动态治疗方案的平均反应。

相似文献

1
Marginal Mean Models for Dynamic Regimes.
J Am Stat Assoc. 2001 Dec 1;96(456):1410-1423. doi: 10.1198/016214501753382327.
6
Dynamic treatment regimes: practical design considerations.
Clin Trials. 2004 Feb;1(1):9-20. doi: 10.1191/1740774s04cn002oa.
7
Interpretable Dynamic Treatment Regimes.
J Am Stat Assoc. 2018;113(524):1541-1549. doi: 10.1080/01621459.2017.1345743. Epub 2018 Nov 14.
8
Causal effect models for realistic individualized treatment and intention to treat rules.
Int J Biostat. 2007;3(1):Article 3. doi: 10.2202/1557-4679.1022.
9
Estimation of optimal dynamic treatment regimes.
Clin Trials. 2014 Aug;11(4):400-407. doi: 10.1177/1740774514532570. Epub 2014 May 28.
10
Bayesian inference for optimal dynamic treatment regimes in practice.
Int J Biostat. 2023 May 17;19(2):309-331. doi: 10.1515/ijb-2022-0073. eCollection 2023 Nov 1.

引用本文的文献

1
Synergistic self-learning approach to establishing individualized treatment rules from multiple benefit outcomes in a calcium supplementation trial.
J R Stat Soc Ser C Appl Stat. 2025 Feb 14;74(4):925-945. doi: 10.1093/jrsssc/qlaf008. eCollection 2025 Nov.
2
A MARGINAL STRUCTURAL MODEL FOR PARTIAL COMPLIANCE IN SMARTS.
Ann Appl Stat. 2024 Jun;18(2):905-921. doi: 10.1214/21-aoas1586. Epub 2024 Apr 5.
3
Nonparametric assessment of regimen response curve estimators.
Biometrics. 2025 Apr 2;81(2). doi: 10.1093/biomtc/ujaf066.
4
The gap-closing estimand: A causal approach to study interventions that close disparities across social categories.
Sociol Methods Res. 2024 May;53(2):507-570. doi: 10.1177/00491241211055769. Epub 2022 Jan 13.
5
Gerontologic Biostatistics and Data Science: Aging Research in the Era of Big Data.
J Gerontol A Biol Sci Med Sci. 2024 Dec 11;80(1). doi: 10.1093/gerona/glae269.
6
A Bayesian multivariate hierarchical model for developing a treatment benefit index using mixed types of outcomes.
BMC Med Res Methodol. 2024 Sep 27;24(1):218. doi: 10.1186/s12874-024-02333-z.
10
Nonparametric Bayesian Q-learning for optimization of dynamic treatment regimes in the presence of partial compliance.
Stat Methods Med Res. 2023 Sep;32(9):1649-1663. doi: 10.1177/09622802231181223. Epub 2023 Jun 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验