Suppr超能文献

软骨微观摩擦学的原位研究:速度和接触面积的作用。

In-situ studies of cartilage microtribology: roles of speed and contact area.

作者信息

Bonnevie E D, Baro V, Wang L, Burris D L

机构信息

Department of Mechanical Engineering, University of Delaware, Newark, DE.

出版信息

Tribol Lett. 2011 Jan;41(1):83-95. doi: 10.1007/s11249-010-9687-0.

Abstract

The progression of local cartilage surface damage toward early stage osteoarthritis (OA) likely depends on the severity of the damage and its impact on the local lubrication and stress distribution in the surrounding tissue. It is difficult to study the local responses using traditional methods; in-situ microtribological methods are being pursued here as a means to elucidate the mechanical aspects of OA progression. While decades of research have been dedicated to the macrotribological properties of articular cartilage, the microscale response is unclear. An experimental study of healthy cartilage microtribology was undertaken to assess the physiological relevance of a microscale friction probe. Normal forces were on the orderof50 mN. Sliding speed varied from 0 to 5 mm/s, and two probes radii, 0.8 mm and 3.2 mm, were used in the study. In-situ measurements of the indentation depth into the cartilage enabled calculations of contact area, effective elastic modulus, elastic and fluid normal force contributions, and the interfacial friction coefficient. This work resulted in the following findings: 1) at high sliding speed (V=1-5 mm/s), the friction coefficient was low (μ = 0.025) and insensitive to probe radius (0.8 mm 3.2 mm) despite the 4-folddifference in the resulting contact areas; 2) The contact area was a strong function of the probe radius and sliding speed; 3) the friction coefficient was proportional to contact area when sliding speed varied from 0.05mm/s-5mm/s; 4) the fluid load support was greater than 85% for all sliding conditions (0% fluid support when V=0) and was insensitive to both probe radius and sliding speed. The findings were consistent with the adhesive theory of friction; as speed increased, increased effective hardness reduced the area of solid-solid contact which subsequently reduced the friction force. Where the severity of the sliding conditions dominates the wear and degradation of typical engineering tribomaterials, the results suggest that joint motion is actually beneficial for maintaining low matrix stresses, low contact areas, and effective lubrication for the fluid-saturated porous cartilage tissue. Further, the results demonstrated effective pressurization and lubrication beneath single asperity microscale contacts. With carefully designed experimental conditions, local friction probes can facilitate more fundamental studies of cartilage lubrication, friction and wear, and potentially add important insights into the mechanical mechanisms of OA.

摘要

局部软骨表面损伤向早期骨关节炎(OA)的进展可能取决于损伤的严重程度及其对周围组织局部润滑和应力分布的影响。使用传统方法很难研究局部反应;在此采用原位微观摩擦学方法来阐明OA进展的力学方面。虽然数十年来的研究一直致力于关节软骨的宏观摩擦学特性,但微观尺度的反应尚不清楚。开展了一项关于健康软骨微观摩擦学的实验研究,以评估微观摩擦探针的生理相关性。法向力约为50毫牛。滑动速度在0至5毫米/秒之间变化,研究中使用了两种半径的探针,分别为0.8毫米和3.2毫米。对软骨中压痕深度的原位测量能够计算接触面积、有效弹性模量、弹性和流体法向力贡献以及界面摩擦系数。这项工作得出了以下发现:1)在高滑动速度(V = 1 - 5毫米/秒)下,摩擦系数较低(μ = 0.025),并且对探针半径(0.8毫米对3.2毫米)不敏感,尽管由此产生的接触面积相差4倍;2)接触面积是探针半径和滑动速度的强函数;3)当滑动速度从0.05毫米/秒变化到5毫米/秒时,摩擦系数与接触面积成正比;4)在所有滑动条件下(V = 0时流体支撑为0%),流体负载支撑大于85%,并且对探针半径和滑动速度均不敏感。这些发现与摩擦的粘着理论一致;随着速度增加,有效硬度增加,减少了固体 - 固体接触面积,从而降低了摩擦力。在典型工程摩擦材料的磨损和降解主要由滑动条件的严重程度主导的情况下,结果表明关节运动实际上有利于维持低基质应力、低接触面积以及对流体饱和多孔软骨组织的有效润滑。此外,结果证明了在单个粗糙微观接触下的有效加压和润滑。通过精心设计实验条件,局部摩擦探针可以促进对软骨润滑、摩擦和磨损的更基础研究,并可能为OA的力学机制提供重要见解。

相似文献

1
In-situ studies of cartilage microtribology: roles of speed and contact area.
Tribol Lett. 2011 Jan;41(1):83-95. doi: 10.1007/s11249-010-9687-0.
2
Enzymatic digestion does not compromise sliding-mediated cartilage lubrication.
Acta Biomater. 2024 Apr 1;178:196-207. doi: 10.1016/j.actbio.2024.02.040. Epub 2024 Feb 28.
3
Microscale surface friction of articular cartilage in early osteoarthritis.
J Mech Behav Biomed Mater. 2013 Sep;25:11-22. doi: 10.1016/j.jmbbm.2013.03.019. Epub 2013 Apr 2.
4
Comparative tribology II-Measurable biphasic tissue properties have predictable impacts on cartilage rehydration and lubricity.
Acta Biomater. 2022 Jan 15;138:375-389. doi: 10.1016/j.actbio.2021.10.049. Epub 2021 Oct 30.
5
6
Experimental verification of the role of interstitial fluid pressurization in cartilage lubrication.
J Orthop Res. 2004 May;22(3):565-70. doi: 10.1016/j.orthres.2003.07.002.
7
In situ friction measurement on murine cartilage by atomic force microscopy.
J Biomech. 2008;41(3):541-8. doi: 10.1016/j.jbiomech.2007.10.013. Epub 2007 Dec 3.
8
Role of interstitial fluid pressurization in TMJ lubrication.
J Dent Res. 2015 Jan;94(1):85-92. doi: 10.1177/0022034514553626. Epub 2014 Oct 8.
9
Alterations in articular cartilage frictional properties in the setting of acute gouty arthritis.
PLoS One. 2024 Mar 21;19(3):e0298722. doi: 10.1371/journal.pone.0298722. eCollection 2024.
10
Effect of synovial fluid on boundary lubrication of articular cartilage.
Osteoarthritis Cartilage. 2007 Jan;15(1):35-47. doi: 10.1016/j.joca.2006.06.005. Epub 2006 Jul 21.

引用本文的文献

1
How Do Cartilage Lubrication Mechanisms Fail in Osteoarthritis? A Comprehensive Review.
Bioengineering (Basel). 2024 May 24;11(6):541. doi: 10.3390/bioengineering11060541.
2
Brushing Up on Cartilage Lubrication: Polyelectrolyte-Enhanced Tribological Rehydration.
Langmuir. 2024 May 21;40(20):10648-10662. doi: 10.1021/acs.langmuir.4c00598. Epub 2024 May 7.
3
Alterations in articular cartilage frictional properties in the setting of acute gouty arthritis.
PLoS One. 2024 Mar 21;19(3):e0298722. doi: 10.1371/journal.pone.0298722. eCollection 2024.
4
Comparative Tribology: Articulation-induced rehydration of cartilage across species.
Biotribology (Oxf). 2021 Mar;25. doi: 10.1016/j.biotri.2020.100159. Epub 2020 Dec 31.
5
Toward defining the role of the synovium in mitigating normal articular cartilage wear and tear.
J Biomech. 2023 Feb;148:111472. doi: 10.1016/j.jbiomech.2023.111472. Epub 2023 Jan 26.
8
Tunable Synthesis of Hydrogel Microfibers via Interfacial Tetrazine Ligation.
Biomacromolecules. 2022 Jul 11;23(7):3017-3030. doi: 10.1021/acs.biomac.2c00504. Epub 2022 Jun 23.
10
Articular Cartilage Friction, Strain, and Viability Under Physiological to Pathological Benchtop Sliding Conditions.
Cell Mol Bioeng. 2021 Apr 27;14(4):349-363. doi: 10.1007/s12195-021-00671-2. eCollection 2021 Aug.

本文引用的文献

1
Sponge-hydrostatic and weeping bearings.
Nature. 1959 Oct 24;184:1284-5. doi: 10.1038/1841284a0.
3
The role of interstitial fluid pressurization in articular cartilage lubrication.
J Biomech. 2009 Jun 19;42(9):1163-76. doi: 10.1016/j.jbiomech.2009.04.040. Epub 2009 May 22.
4
5
The temporal response of the friction coefficient of articular cartilage depends on the contact area.
J Biomech. 2007;40(14):3257-60. doi: 10.1016/j.jbiomech.2007.03.025. Epub 2007 May 9.
6
Boundary lubrication of articular cartilage: role of synovial fluid constituents.
Arthritis Rheum. 2007 Mar;56(3):882-91. doi: 10.1002/art.22446.
9
Microscale frictional response of bovine articular cartilage from atomic force microscopy.
J Biomech. 2004 Nov;37(11):1679-87. doi: 10.1016/j.jbiomech.2004.02.017.
10
Experimental verification of the role of interstitial fluid pressurization in cartilage lubrication.
J Orthop Res. 2004 May;22(3):565-70. doi: 10.1016/j.orthres.2003.07.002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验