Sharma P, Titus A H, Qu B, Huang Y, Wang W, Kuhls-Gilcrist A, Cartwright A N, Bednarek D R, Rudin S
P. Sharma, A.H Titus, B. Qu, Y. Huang, W. Wang, A. N. Cartwright, D. R. Bednarek and S. Rudin are with the Electrical Engineering Department and Toshiba Stroke Research Center at University at Buffalo, The State University of New York, Buffalo, NY 14260-1920, USA.
IEEE Nucl Sci Symp Conf Rec (1997). 2010:2134-2137. doi: 10.1109/NSSMIC.2010.5874157.
We describe a custom multiple-module multiplexer integrated circuit (MMMIC) that enables the combination of discrete Electron multiplying charge coupled devices (EMCCD) based imaging modules to improve medical imaging systems. It is highly desirable to have flexible imaging systems that provide high spatial resolution over a specific region of interest (ROI) and a field of view (FOV) large enough to encompass areas of clinical interest. Also, such systems should be dynamic, i.e. should be able to maintain a specified acquisition bandwidth irrespective of the size of the imaged FOV. The MMMIC achieves these goals by 1) multiplexing the outputs of an array of imaging modules to enable a larger FOV, 2) enabling a number of binning modes for adjustable high spatial resolution, and 3) enabling selection of a subset of modules in the array to achieve ROI imaging at a predetermined display bandwidth. The MMMIC design also allows multiple MMMICs to be connected to control larger arrays. The prototype MMMIC was designed and fabricated in the ON-SEMI 0.5μm CMOS process through MOSIS (www.mosis.org). It has three 12-bit inputs, a single 12-bit output, three input enable bits, and one output enable, so that one MMMIC can control the output from three discrete imager arrays. The modular design of the MMMIC enables four identical chips, connected in a two-stage sequential arrangement, to readout a 3×3 collection of individual imaging modules. The first stage comprises three MMMICs (each connected to three of the individual imaging module), and the second stage is a single MMMIC whose 12-bit output is then sent via a CameraLink interface to the system computer. The prototype MMMIC was successfully tested using digital outputs from two EMCCD-based detectors to be used in an x-ray imaging array detector system.Finally, we show how the MMMIC can be used to extend an imaging system to include any arbitrary (M×N) array of imaging modules enabling a large FOV along with ROI imaging and adjustable high spatial resolution.
我们描述了一种定制的多模块多路复用器集成电路(MMMIC),它能够将基于离散电子倍增电荷耦合器件(EMCCD)的成像模块组合起来,以改进医学成像系统。拥有灵活的成像系统是非常理想的,这种系统能够在特定感兴趣区域(ROI)上提供高空间分辨率,并且具有足够大的视野(FOV)以涵盖临床关注区域。此外,这样的系统应该是动态的,即无论成像FOV的大小如何,都应能够维持指定的采集带宽。MMMIC通过以下方式实现这些目标:1)对成像模块阵列的输出进行多路复用,以实现更大的FOV;2)启用多种合并模式以实现可调的高空间分辨率;3)能够选择阵列中的模块子集,以在预定的显示带宽下实现ROI成像。MMMIC的设计还允许连接多个MMMIC以控制更大的阵列。原型MMMIC是通过MOSIS(www.mosis.org)在安森美半导体0.5μm CMOS工艺中设计和制造的。它有三个12位输入、一个12位输出、三个输入使能位和一个输出使能,这样一个MMMIC可以控制来自三个离散成像器阵列的输出。MMMIC的模块化设计使得四个相同的芯片以两级顺序排列连接,能够读出3×3的单个成像模块集合。第一级包括三个MMMIC(每个连接到三个单独的成像模块),第二级是一个单个MMMIC,其12位输出然后通过CameraLink接口发送到系统计算机。使用来自两个基于EMCCD的探测器的数字输出对原型MMMIC进行了成功测试,这些探测器将用于X射线成像阵列探测器系统。最后,我们展示了MMMIC如何用于扩展成像系统,以包括任何任意(M×N)的成像模块阵列,从而实现大FOV以及ROI成像和可调的高空间分辨率。