Habte F, Foudray A M K, Olcott P D, Levin C S
Nuclear Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6010, USA.
Phys Med Biol. 2007 Jul 7;52(13):3753-72. doi: 10.1088/0031-9155/52/13/007. Epub 2007 May 29.
We are studying two new detector technologies that directly measure the three-dimensional coordinates of 511 keV photon interactions for high-resolution positron emission tomography (PET) systems designed for small animal and breast imaging. These detectors are based on (1) lutetium oxyorthosilicate (LSO) scintillation crystal arrays coupled to position-sensitive avalanche photodiodes (PSAPD) and (2) cadmium zinc telluride (CZT). The detectors have excellent measured 511 keV photon energy resolutions (</=12% FWHM for LSO-PSAPD and </=3% for CZT) and good coincidence time resolutions (2 ns FWHM for LSO-PSAPD and 8 ns for CZT). The goal is to incorporate the detectors into systems that will achieve 1 mm(3) spatial resolution ( approximately 1 mm(3), uniform throughout the field of view (FOV)), with excellent contrast resolution as well. In order to realize 1 mm(3) spatial resolution with high signal-to-noise ratio (SNR), it is necessary to significantly boost coincidence photon detection efficiency (referred to as photon sensitivity). To facilitate high photon sensitivity in the proposed PET system designs, the detector arrays are oriented 'edge-on' with respect to incoming 511 keV annihilation photons and arranged to form a compact FOV with detectors very close to, or in contact with, the subject tissues. In this paper, we used Monte Carlo simulation to study various factors that limit the photon sensitivity of a high-resolution PET system dedicated to small animal imaging. To optimize the photon sensitivity, we studied several possible system geometries for a fixed 8 cm transaxial and 8 cm axial FOV. We found that using rectangular-shaped detectors arranged into a cylindrical geometry does not yield the best photon sensitivity. This is due to the fact that forming rectangular-shaped detectors into a ring produces significant wedge-shaped inter-module gaps, through which Compton-scattered photons in the detector can escape. This effect limits the center point source photon sensitivity to <6% for a cylindrical system with rectangular-shaped blocks, 8 cm diameter and 8 cm axial FOV, and a 350-650 keV energy window setting. On the other hand, if the proposed rectangular-shaped detectors are arranged into an 8 x 8 x 8 cm(3) FOV box configuration (four detector panels), there are only four inter-module gaps and the favorable distribution of these gaps yields >8% photon sensitivity for the LSO-PSAPD box configuration and >15% for CZT box geometry, using a 350-650 keV energy window setting. These simulation results compare well with analytical estimations. The trend is different for a clinical whole-body PET system that uses conventional LSO-PMT block detectors with larger crystal elements. Simulations predict roughly the same sensitivity for both box and cylindrical detector configurations. This results from the fact that a large system diameter (>80 cm) results in relatively small inter-module gaps in clinical whole-body PET. In addition, the relatively large block detectors (typically >5 x 5 cm(2) cross-sectional area) and large crystals (>4 x 4 x 20 mm(3)) enable a higher fraction of detector scatter photons to be absorbed compared to a small animal system. However, if the four detector sides (panels) of a box-shaped system geometry are configured to move with respect to each other, to better fit the transaxial FOV to the actual size of the object to be imaged, a significant increase in photon sensitivity is possible. Simulation results predict a 60-100% relative increase of photon sensitivity for the proposed small animal PET box configurations and >60% increase for a clinical whole-body system geometry. Thus, simulation results indicate that for a PET system built from rectangular-shaped detector modules, arranging them into a box-shaped system geometry may help us to significantly boost photon sensitivity for both small animal and clinical PET systems.
我们正在研究两种新型探测器技术,它们可直接测量用于小动物和乳腺成像的高分辨率正电子发射断层扫描(PET)系统中511 keV光子相互作用的三维坐标。这些探测器基于:(1)与位置敏感雪崩光电二极管(PSAPD)耦合的正硅酸镥(LSO)闪烁晶体阵列,以及(2)碲锌镉(CZT)。这些探测器具有出色的511 keV光子能量分辨率测量结果(LSO - PSAPD的半高宽≤12%,CZT的半高宽≤3%)和良好的符合时间分辨率(LSO - PSAPD为2 ns半高宽,CZT为8 ns)。目标是将这些探测器集成到能够实现1 mm³空间分辨率(在整个视野(FOV)内约为1 mm³均匀)且具有出色对比度分辨率的系统中。为了以高信噪比(SNR)实现1 mm³空间分辨率,有必要显著提高符合光子探测效率(称为光子灵敏度)。为了在所提出的PET系统设计中实现高光子灵敏度,探测器阵列相对于入射的511 keV湮灭光子以“边缘入射”方式定向,并排列成紧凑的视野,探测器非常靠近或接触目标组织。在本文中,我们使用蒙特卡罗模拟来研究限制专门用于小动物成像的高分辨率PET系统光子灵敏度的各种因素。为了优化光子灵敏度,我们研究了固定8 cm横向视野和8 cm轴向视野的几种可能系统几何形状。我们发现,将矩形探测器排列成圆柱形几何形状并不能产生最佳的光子灵敏度。这是因为将矩形探测器形成一个环会产生明显的楔形模块间间隙,探测器中的康普顿散射光子可以通过这些间隙逃逸。对于直径8 cm、轴向视野8 cm且采用350 - 650 keV能量窗设置的矩形块圆柱形系统,这种效应将中心点源光子灵敏度限制在<6%。另一方面,如果将所提出的矩形探测器排列成8×8×8 cm³视野盒配置(四个探测器面板),则只有四个模块间间隙,并且这些间隙的有利分布使得对于LSO - PSAPD盒配置光子灵敏度>8%,对于CZT盒几何形状光子灵敏度>15%,采用350 - 650 keV能量窗设置。这些模拟结果与分析估计结果吻合良好。对于使用具有较大晶体元件的传统LSO - PMT块探测器的临床全身PET系统,趋势则不同。模拟预测盒形和圆柱形探测器配置的灵敏度大致相同。这是因为大系统直径(>80 cm)导致临床全身PET中模块间间隙相对较小。此外,与小动物系统相比,相对较大的块探测器(通常横截面面积>5×5 cm²)和大晶体(>4×4×20 mm³)使得更高比例的探测器散射光子能够被吸收。然而,如果盒形系统几何形状的四个探测器侧面(面板)配置为相对于彼此移动,以更好地使横向视野适应要成像物体的实际尺寸,则有可能显著提高光子灵敏度。模拟结果预测,对于所提出的小动物PET盒配置,光子灵敏度相对增加60 - 100%,对于临床全身系统几何形状增加>60%。因此,模拟结果表明,对于由矩形探测器模块构建的PET系统,将它们排列成盒形系统几何形状可能有助于我们显著提高小动物和临床PET系统的光子灵敏度。