Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA.
J Chem Phys. 2011 Jul 14;135(2):024201. doi: 10.1063/1.3599711.
We propose a method based on Stark-induced adiabatic Raman passage (SARP) for preparing vibrationally excited molecules with known orientation and alignment for future dynamical stereochemistry studies. This method utilizes the (J, M)-state dependent dynamic Stark shifts of rovibrational levels induced by delayed but overlapping pump and Stokes pulses of unequal intensities. Under collision-free conditions, our calculations show that we can achieve complete population transfer to an excited vibrational level (v > 0) of the H(2) molecule in its ground electronic state. Specifically, the H(2) (v = 1, J = 2, M = 0) level can be prepared with complete population transfer from the (v = 0, J = 0, M = 0) level using the S(0) branch of the Raman transition with visible pump and Stoke laser pulses, each polarized parallel to the z axis (uniaxial π-π Raman pumping). Similarly, H(2) (v = 1, J = 2, M = ±2) can be prepared using SARP with a left circularly polarized pump and a right circularly (or vice versa) polarized Stokes wave propagating along the z axis (σ(±)-σ(∓) Raman pumping). This technique requires phase coherent nanosecond pulses with unequal intensity between the pump and the Stokes pulses, one being four or more times greater than the other. A peak intensity of ~16 GW/cm(2) for the stronger pulse is required to generate the desirable sweep of the Raman resonance frequency. These conditions may be fulfilled using red and green laser pulses with the duration of a few nanoseconds and optical energies of ~12 and 60 mJ within a focused beam of diameter ~0.25 mm. Additionally, complete population transfer to the v = 4 vibrational level is predicted to be possible using SARP with a 355-nm pump and a near infrared Stokes laser with accessible pulse energies.
我们提出了一种基于斯塔克诱导绝热拉曼通道(SARP)的方法,用于制备具有已知取向和排列的振动激发分子,以便未来进行动力学立体化学研究。该方法利用了由延迟但重叠的、强度不等的泵浦和斯托克斯脉冲引起的振动态的(J,M)态依赖的动态斯塔克位移。在无碰撞条件下,我们的计算表明,我们可以实现 H(2)分子在基电子态下完全转移到激发的振动能级(v > 0)。具体来说,使用可见泵浦和斯托克斯激光脉冲的 S(0)支带,可以将 H(2)(v = 1,J = 2,M = 0)能级从(v = 0,J = 0,M = 0)能级完全转移到 SARP,其中泵浦和斯托克斯激光脉冲的偏振方向均平行于 z 轴(单轴π-π拉曼泵浦)。同样,使用左旋圆偏振泵浦和沿 z 轴传播的右旋圆偏振(或反之亦然)斯托克斯波(σ(±)-σ(∓)拉曼泵浦)也可以制备 H(2)(v = 1,J = 2,M = ±2)。该技术需要相位相干的纳秒脉冲,泵浦和斯托克斯脉冲之间的强度不相等,其中一个脉冲的强度是另一个脉冲的四到四倍以上。需要~16 GW/cm(2)的峰值强度来产生期望的拉曼共振频率扫描。这些条件可以使用持续时间为数纳秒、光学能量约为 12 和 60 mJ 的红、绿激光脉冲,并在直径约为 0.25 mm 的聚焦光束中实现。此外,使用 355nm 泵浦和近红外斯托克斯激光,预计可以通过 SARP 实现完全转移到 v = 4 振动能级。