School of Plant Biology, University of Western Australia, 35, Stirling Highway, Crawley, WA 6009, Australia.
Math Biosci. 2011 Oct;233(2):77-89. doi: 10.1016/j.mbs.2011.06.005. Epub 2011 Jul 13.
Computational simulation models can provide a way of understanding and predicting insect population dynamics and evolution of resistance, but the usefulness of such models depends on generating or estimating the values of key parameters. In this paper, we describe four numerical algorithms generating or estimating key parameters for simulating four different processes within such models. First, we describe a novel method to generate an offspring genotype table for one- or two-locus genetic models for simulating evolution of resistance, and how this method can be extended to create offspring genotype tables for models with more than two loci. Second, we describe how we use a generalized inverse matrix to find a least-squares solution to an over-determined linear system for estimation of parameters in probit models of kill rates. This algorithm can also be used for the estimation of parameters of Freundlich adsorption isotherms. Third, we describe a simple algorithm to randomly select initial frequencies of genotypes either without any special constraints or with some pre-selected frequencies. Also we give a simple method to calculate the "stable" Hardy-Weinberg equilibrium proportions that would result from these initial frequencies. Fourth we describe how the problem of estimating the intrinsic rate of natural increase of a population can be converted to a root-finding problem and how the bisection algorithm can then be used to find the rate. We implemented all these algorithms using MATLAB and Python code; the key statements in both codes consist of only a few commands and are given in the appendices. The results of numerical experiments are also provided to demonstrate that our algorithms are valid and efficient.
计算模拟模型可以提供一种理解和预测昆虫种群动态和抗药性演变的方法,但这种模型的有用性取决于生成或估计关键参数的值。在本文中,我们描述了四种数值算法,用于生成或估计模拟模型中四个不同过程的关键参数。首先,我们描述了一种新颖的方法,用于生成用于模拟抗药性演变的单或双基因座遗传模型的后代基因型表,以及如何将此方法扩展到为具有两个以上基因座的模型创建后代基因型表。其次,我们描述了如何使用广义逆矩阵为概率模型中的参数估计寻找过定线性系统的最小二乘解,该算法也可用于 Freundlich 吸附等温线的参数估计。第三,我们描述了一种简单的算法,用于随机选择基因型的初始频率,无需任何特殊约束或预先选择某些频率。我们还给出了一种简单的方法来计算这些初始频率将导致的“稳定”Hardy-Weinberg 平衡比例。第四,我们描述了如何将估计种群自然增长率的问题转化为求根问题,以及如何使用二分法找到该速率。我们使用 MATLAB 和 Python 代码实现了所有这些算法;这两种代码的关键语句都只有几条命令,并在附录中给出。还提供了数值实验的结果,以证明我们的算法是有效的和高效的。