Suppr超能文献

三磷酸叶酸与线粒体叶酸载体的结合。

Tetrahydrofolate recognition by the mitochondrial folate transporter.

机构信息

Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298, USA.

出版信息

J Biol Chem. 2011 Sep 9;286(36):31480-9. doi: 10.1074/jbc.M111.272187. Epub 2011 Jul 15.

Abstract

A mitochondrial carrier family (MCF) of transport proteins facilitates the transfer of charged small molecules across the inner mitochondrial membrane. The human genome has ∼50 genes corresponding to members of this family. All MCF proteins contain three repeats of a characteristic and conserved PX(D/E)XX(K/R) motif thought to be central to the mechanism of these transporters. The mammalian mitochondrial folate transporter (MFT) is one of a few MCF members, known as the P(I/L)W subfamily, that have evolved a tryptophan residue in place of the (D/E) in the second conserved motif; the function of this substitution (Trp-142) is unclear. Molecular dynamics simulations of the MFT in its explicit membrane environment identified this tryptophan, as well as several other residues lining the transport cavity, to be involved in a series of sequential interactions that coordinated the movement of the tetrahydrofolate substrate within the transport cavity. We probed the function of these residues by mutagenesis. The mutation of every residue identified by molecular dynamics to interact with tetrahydrofolate during simulated transit into the aqueous channel severely impaired folate transport. Mutation of the subfamily-defining tryptophan residue in the MFT to match the MCF consensus at this position (W142D) was incompatible with cell survival. These studies indicate that MFT Trp-142, as well as other residues lining the transporter interior, coordinate tetrahydrofolate descent and positioning of the substrate in the transporter basin. Overall, we identified residues in the walls and at the base of the transport cavity that are involved in substrate recognition by the MFT.

摘要

一个线粒体载体家族(MCF)的转运蛋白促进了带电荷的小分子在人线粒体基质膜之间的转移。人类基因组中有大约 50 个基因对应于这个家族的成员。所有 MCF 蛋白都包含三个重复的特征和保守的 PX(D/E)XX(K/R)基序,该基序被认为是这些转运蛋白的核心机制。哺乳动物线粒体叶酸转运蛋白(MFT)是少数 MCF 成员之一,称为 P(I/L)W 亚家族,它在第二个保守基序中进化出一个色氨酸残基代替(D/E);这个取代(Trp-142)的功能尚不清楚。MFT 在其明确的膜环境中的分子动力学模拟确定了这个色氨酸,以及其他几个沿运输腔排列的残基,参与了一系列连续的相互作用,协调了四氢叶酸底物在运输腔中的运动。我们通过突变来研究这些残基的功能。分子动力学确定的与模拟运输过程中四氢叶酸相互作用的每个残基的突变都严重损害了叶酸的转运。将 MFT 中定义亚家族的色氨酸残基突变为与 MCF 共识在这个位置(W142D)不兼容细胞存活。这些研究表明,MFT 的 Trp-142 以及其他位于转运体内部的残基,协调四氢叶酸的下降和底物在转运体盆地中的定位。总的来说,我们确定了在转运腔的壁和底部参与 MFT 底物识别的残基。

相似文献

1
Tetrahydrofolate recognition by the mitochondrial folate transporter.
J Biol Chem. 2011 Sep 9;286(36):31480-9. doi: 10.1074/jbc.M111.272187. Epub 2011 Jul 15.
5
Identification of transport-critical residues in a folate transporter from the folate-biopterin transporter (FBT) family.
J Biol Chem. 2010 Jan 22;285(4):2867-75. doi: 10.1074/jbc.M109.063651. Epub 2009 Nov 18.
6
Hereditary folate malabsorption due to a mutation in the external gate of the proton-coupled folate transporter SLC46A1.
Blood Adv. 2018 Jan 5;2(1):61-68. doi: 10.1182/bloodadvances.2017012690. eCollection 2018 Jan 9.
9
Insights into the molecular basis for substrate binding and specificity of the fungal cystine transporter CgCYN1.
Biochim Biophys Acta Biomembr. 2017 Nov;1859(11):2259-2268. doi: 10.1016/j.bbamem.2017.08.020. Epub 2017 Sep 1.
10
Role of the tryptophan residues in proton-coupled folate transporter (PCFT-SLC46A1) function.
Am J Physiol Cell Physiol. 2016 Jul 1;311(1):C150-7. doi: 10.1152/ajpcell.00084.2016. Epub 2016 Jun 1.

引用本文的文献

1
Transporters in vitamin uptake and cellular metabolism: impacts on health and disease.
Life Metab. 2025 Mar 10;4(3):loaf008. doi: 10.1093/lifemeta/loaf008. eCollection 2025 Jun.
7
Structure-Based Design of Transport-Specific Multitargeted One-Carbon Metabolism Inhibitors in Cytosol and Mitochondria.
J Med Chem. 2023 Aug 24;66(16):11294-11323. doi: 10.1021/acs.jmedchem.3c00763. Epub 2023 Aug 15.
9
Folate Metabolism in Hepatocellular Carcinoma. What Do We Know So Far?
Technol Cancer Res Treat. 2022 Jan-Dec;21:15330338221144446. doi: 10.1177/15330338221144446.

本文引用的文献

1
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
3
Conformational dynamics of the mitochondrial ADP/ATP carrier: a simulation study.
Mol Membr Biol. 2008 Sep;25(6-7):506-17. doi: 10.1080/09687680802459271.
4
Binding of ADP in the mitochondrial ADP/ATP carrier is driven by an electrostatic funnel.
J Am Chem Soc. 2008 Sep 24;130(38):12725-33. doi: 10.1021/ja8033087. Epub 2008 Aug 26.
5
Electrostatic funneling of substrate in mitochondrial inner membrane carriers.
Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9598-603. doi: 10.1073/pnas.0801786105. Epub 2008 Jul 8.
6
Very fast prediction and rationalization of pKa values for protein-ligand complexes.
Proteins. 2008 Nov 15;73(3):765-83. doi: 10.1002/prot.22102.
7
Optimizing pKa computation in proteins with pH adapted conformations.
Proteins. 2008 May 15;71(3):1335-48. doi: 10.1002/prot.21820.
8
PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations.
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W522-5. doi: 10.1093/nar/gkm276. Epub 2007 May 8.
9
Identification of the substrate binding sites within the yeast mitochondrial citrate transport protein.
J Biol Chem. 2007 Jun 8;282(23):17210-20. doi: 10.1074/jbc.M611268200. Epub 2007 Mar 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验