Suppr超能文献

直接定量测定决定泛素蛋白机械展开的尝试频率。

Direct quantification of the attempt frequency determining the mechanical unfolding of ubiquitin protein.

机构信息

Department of Biological Sciences, Columbia University, New York, New York 10027, USA.

出版信息

J Biol Chem. 2011 Sep 9;286(36):31072-9. doi: 10.1074/jbc.M111.264093. Epub 2011 Jul 16.

Abstract

Understanding protein dynamics requires a comprehensive knowledge of the underlying potential energy surface that governs the motion of each individual protein molecule. Single molecule mechanical studies have provided the unprecedented opportunity to study the individual unfolding pathways along a well defined coordinate, the end-to-end length of the protein. In these experiments, unfolding requires surmounting an energy barrier that separates the native from the extended state. The calculation of the absolute value of the barrier height has traditionally relied on the assumption of an attempt frequency, υ(‡). Here we used single molecule force-clamp spectroscopy to directly determine the value of υ(‡) for mechanical unfolding by measuring the unfolding rate of the small protein ubiquitin at varying temperatures. Our experiments demonstrate a significant effect of the temperature on the mechanical rate of unfolding. By extrapolating the unfolding rate in the absence of force for different temperatures, varying within the range spanning from 5 to 45 °C, we measured a value for the activation barrier of ΔG(‡) = 71 ± 5 kJ/mol and an exponential prefactor υ(‡) ∼4 × 10(9) s(-1). Although the measured prefactor value is 3 orders of magnitude smaller than the value predicted by the transition state theory (∼6 × 10(12) s(-1)), it is 400-fold higher than that encountered in analogous experiments studying the effect of temperature on the reactivity of a protein-embedded disulfide bond (∼10(7) M(-1) s(-1)). This approach will allow quantitative characterization of the complete energy landscape of a folding polypeptide from highly extended states, of capital importance for proteins with elastic function.

摘要

了解蛋白质动力学需要全面了解控制每个蛋白质分子运动的潜在能量表面。单分子力学研究为研究沿着明确定义的坐标(蛋白质的首尾长度)的单个展开途径提供了前所未有的机会。在这些实验中,展开需要克服将天然状态与伸展状态分开的能量障碍。障碍高度的绝对值的计算传统上依赖于尝试频率 υ(‡)的假设。在这里,我们使用单分子力钳光谱法通过测量在不同温度下的小蛋白泛素的展开速率来直接确定机械展开过程中 υ(‡)的价值。我们的实验表明温度对机械展开速率有显著影响。通过在没有力的情况下外推不同温度下的展开速率,温度范围从 5 到 45°C 不等,我们测量了激活障碍 ΔG(‡)的值为 71 ± 5 kJ/mol 和指数前因子 υ(‡)∼4 × 10(9) s(-1)。尽管测量的前因子值比过渡态理论预测的值(∼6 × 10(12) s(-1))小 3 个数量级,但它比在类似的研究蛋白质嵌入二硫键的温度对反应性影响的实验中遇到的值(∼10(7) M(-1) s(-1))高 400 倍。这种方法将允许从高度伸展状态对折叠多肽的完整能量景观进行定量描述,对于具有弹性功能的蛋白质至关重要。

相似文献

1
Direct quantification of the attempt frequency determining the mechanical unfolding of ubiquitin protein.
J Biol Chem. 2011 Sep 9;286(36):31072-9. doi: 10.1074/jbc.M111.264093. Epub 2011 Jul 16.
2
FEATHER: Automated Analysis of Force Spectroscopy Unbinding and Unfolding Data via a Bayesian Algorithm.
Biophys J. 2018 Sep 4;115(5):757-762. doi: 10.1016/j.bpj.2018.07.031. Epub 2018 Aug 7.
3
Ligand-induced changes of the apparent transition-state position in mechanical protein unfolding.
Biophys J. 2015 Jul 21;109(2):365-72. doi: 10.1016/j.bpj.2015.06.009.
4
Unfolding Dynamics of Ubiquitin from Constant Force MD Simulation: Entropy-Enthalpy Interplay Shapes the Free-Energy Landscape.
J Phys Chem B. 2019 Feb 14;123(6):1228-1236. doi: 10.1021/acs.jpcb.8b09318. Epub 2019 Feb 5.
7
New dynamical window onto the landscape for forced protein unfolding.
Phys Rev Lett. 2008 Dec 12;101(24):248104. doi: 10.1103/PhysRevLett.101.248104.
8
Direct observation of markovian behavior of the mechanical unfolding of individual proteins.
Biophys J. 2008 Jul;95(2):782-8. doi: 10.1529/biophysj.107.128298. Epub 2008 Mar 28.
9
Mechanical Folding and Unfolding of Protein Barnase at the Single-Molecule Level.
Biophys J. 2016 Jan 5;110(1):63-74. doi: 10.1016/j.bpj.2015.11.015.
10
Dynamic disorder can explain non-exponential kinetics of fast protein mechanical unfolding.
J Struct Biol. 2017 Jan;197(1):43-49. doi: 10.1016/j.jsb.2016.10.003. Epub 2016 Oct 19.

引用本文的文献

1
First-principles studies of the SCl adsorption on the doped boron phosphide monolayer.
J Mol Model. 2025 Mar 8;31(4):111. doi: 10.1007/s00894-025-06333-8.
4
Measuring biological materials mechanics with atomic force microscopy - Mechanical unfolding of biopolymers.
Microsc Res Tech. 2022 Aug;85(8):3025-3036. doi: 10.1002/jemt.24136. Epub 2022 May 2.
5
Direct observation of chaperone-modulated talin mechanics with single-molecule resolution.
Commun Biol. 2022 Apr 4;5(1):307. doi: 10.1038/s42003-022-03258-3.
6
Protein nanomechanics in biological context.
Biophys Rev. 2021 Aug 7;13(4):435-454. doi: 10.1007/s12551-021-00822-9. eCollection 2021 Aug.
8
Talin folding as the tuning fork of cellular mechanotransduction.
Proc Natl Acad Sci U S A. 2020 Sep 1;117(35):21346-21353. doi: 10.1073/pnas.2004091117. Epub 2020 Aug 17.
9
Removal of a Conserved Disulfide Bond Does Not Compromise Mechanical Stability of a VHH Antibody Complex.
Nano Lett. 2019 Aug 14;19(8):5524-5529. doi: 10.1021/acs.nanolett.9b02062. Epub 2019 Jul 5.
10
Probing Position-Dependent Diffusion in Folding Reactions Using Single-Molecule Force Spectroscopy.
Biophys J. 2018 Apr 10;114(7):1657-1666. doi: 10.1016/j.bpj.2018.02.026.

本文引用的文献

1
Probing osmolyte participation in the unfolding transition state of a protein.
Proc Natl Acad Sci U S A. 2011 Jun 14;108(24):9759-64. doi: 10.1073/pnas.1101934108. Epub 2011 May 25.
2
Force-activated reactivity switch in a bimolecular chemical reaction.
Nat Chem. 2009 Jun;1(3):236-42. doi: 10.1038/nchem.207. Epub 2009 May 10.
3
Kinetic measurements on single-molecule disulfide bond cleavage.
J Am Chem Soc. 2011 Mar 16;133(10):3528-34. doi: 10.1021/ja109684q. Epub 2011 Feb 22.
5
Folding of the Pit1 homeodomain near the speed limit.
Proc Natl Acad Sci U S A. 2011 Jan 11;108(2):569-73. doi: 10.1073/pnas.1017832108. Epub 2010 Dec 27.
6
Water's role in the force-induced unfolding of ubiquitin.
Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19284-9. doi: 10.1073/pnas.1013159107. Epub 2010 Oct 25.
7
Complex unfolding kinetics of single-domain proteins in the presence of force.
Biophys J. 2010 Sep 8;99(5):1620-7. doi: 10.1016/j.bpj.2010.06.039.
9
Probing static disorder in Arrhenius kinetics by single-molecule force spectroscopy.
Proc Natl Acad Sci U S A. 2010 Jun 22;107(25):11336-40. doi: 10.1073/pnas.1006517107. Epub 2010 Jun 8.
10
Collapse dynamics of single proteins extended by force.
Biophys J. 2010 Jun 2;98(11):2692-701. doi: 10.1016/j.bpj.2010.02.053.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验