Costescu Bogdan I, Sturm Sebastian, Gräter Frauke
Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany.
Institute for Theoretical Physics, Leipzig University, Postfach 100920, 04009 Leipzig, Germany.
J Struct Biol. 2017 Jan;197(1):43-49. doi: 10.1016/j.jsb.2016.10.003. Epub 2016 Oct 19.
Protein unfolding often does not obey a simple two-state behavior. Previous single molecule force spectroscopy studies demonstrated stretched exponential kinetics of protein unfolding under a constant pulling force, the molecular origin of which remains subject to debate. We here set out to extensively sample the mechanical unfolding of ubiquitin and NuG2 by Molecular Dynamics (MD) simulations. Both proteins show kinetics best fit by stretched exponentials, with stretching exponents similar to those found in experiments, even though static disorder is absent in our short MD simulations. Instead, we can ascribe non-exponential kinetics to dynamic disorder, due to conformational fluctuations on the nanosecond timescale. Our study highlights the general role of dynamic disorder in protein kinetics on a broad range of time scales even including those probed in MD simulations.
蛋白质解折叠通常并不遵循简单的两态行为。先前的单分子力谱研究表明,在恒定拉力下蛋白质解折叠呈现拉伸指数动力学,其分子起源仍存在争议。我们在此通过分子动力学(MD)模拟广泛采样泛素和NuG2的机械解折叠。尽管在我们的短时间MD模拟中不存在静态无序,但这两种蛋白质的动力学都最适合用拉伸指数来描述,其拉伸指数与实验中发现的相似。相反,由于纳秒时间尺度上的构象波动,我们可以将非指数动力学归因于动态无序。我们的研究强调了动态无序在广泛时间尺度上蛋白质动力学中的普遍作用,甚至包括在MD模拟中探测的时间尺度。