Institut de Bioenginyeria de Catalunya, Barcelona, Spain.
Biotechnol Bioeng. 2011 Dec;108(12):3009-18. doi: 10.1002/bit.23265. Epub 2011 Aug 20.
Apart from the paradigm that cell-biomaterials interaction depends on the adsorption of soluble adhesive proteins we anticipate that upon distinct conditions also other, less soluble ECM proteins such as collagens, associate with the biomaterials interface with consequences for cellular response that might be of significant bioengineering interest. Using atomic force microscopy (AFM) we seek to follow the nanoscale behavior of adsorbed type IV collagen (Col IV)--a unique multifunctional matrix protein involved in the organization of basement membranes (BMs) including vascular ones. We have previously shown that substratum wettability significantly affects Col IV adsorption pattern, and in turn alters endothelial cells interaction. Here we introduce two new model surfaces based on self-assembled monolayers (SAMs), a positively charged -NH(2) , and negatively charged -COOH surface, to learn more about their particular effect on Col IV behavior. AFM studies revealed distinct pattern of Col IV assembly onto the two SAMs resembling different aspects of network-like structure or aggregates (suggesting altered protein conformation). Moreover, the amount of adsorbed FITC-labeled Col IV was quantified and showed about twice more protein on NH(2) substrata. Human umbilical vein endothelial cells attached less efficiently to Col IV adsorbed on negatively charged COOH surface judged by altered cell spreading, focal adhesions formation, and actin cytoskeleton development. Immunofluorescence studies also revealed better Col IV recognition by both α(1) and α(2) integrins on positively charged NH(2) substrata resulting in higher phosphorylated focal adhesion kinase recruitment in the focal adhesion complexes. On COOH surface, no integrin clustering was observed. Taken altogether these results, point to the possibility that combined NH(2) and Col IV functionalization may support endothelization of cardiovascular implants.
除了细胞-生物材料相互作用取决于可溶性黏附蛋白的吸附这一范例之外,我们还预计,在不同的条件下,其他较少可溶性的 ECM 蛋白,如胶原蛋白,也会与生物材料界面结合,从而对细胞反应产生影响,这可能具有重要的生物工程意义。我们使用原子力显微镜(AFM)来跟踪吸附型 IV 型胶原蛋白(Col IV)的纳米级行为,Col IV 是一种独特的多功能基质蛋白,参与基底膜(BMs)的组织,包括血管基底膜。我们之前已经表明,基底的润湿性显著影响 Col IV 的吸附模式,并进而改变内皮细胞的相互作用。在这里,我们引入了两种新的基于自组装单层(SAMs)的模型表面,一种带正电荷的-NH(2)和带负电荷的-COOH 表面,以了解它们对 Col IV 行为的特殊影响。AFM 研究显示,Col IV 在两种 SAM 上的组装模式不同,类似于网络状结构或聚集体的不同方面(表明蛋白质构象发生改变)。此外,用 FITC 标记的 Col IV 的吸附量进行了定量,并显示 NH(2)基底上的蛋白质吸附量约增加了一倍。通过改变细胞铺展、粘着斑形成和肌动蛋白细胞骨架的发育,发现人脐静脉内皮细胞在带负电荷的 COOH 表面上附着到吸附的 Col IV 上的效率较低。免疫荧光研究还表明,带正电荷的 NH(2)基底上的两种整合素 α(1)和 α(2)对 Col IV 的识别更好,导致粘着斑复合物中磷酸化粘着斑激酶的募集增加。在 COOH 表面上,没有观察到整合素聚类。总的来说,这些结果表明,NH(2)和 Col IV 的联合功能化可能支持心血管植入物的内皮化。