Suppr超能文献

Ascl1 表达定义了哺乳动物视网膜中受谱系限制的祖细胞的一个亚群。

Ascl1 expression defines a subpopulation of lineage-restricted progenitors in the mammalian retina.

机构信息

Department of Biological Structure, University of Washington, Seattle, WA 98195, USA.

出版信息

Development. 2011 Aug;138(16):3519-31. doi: 10.1242/dev.064006. Epub 2011 Jul 19.

Abstract

The mechanisms of cell fate diversification in the retina are not fully understood. The seven principal cell types of the neural retina derive from a population of multipotent progenitors during development. These progenitors give rise to multiple cell types concurrently, suggesting that progenitors are a heterogeneous population. It is thought that differences in progenitor gene expression are responsible for differences in progenitor competence (i.e. potential) and, subsequently, fate diversification. To elucidate further the mechanisms of fate diversification, we assayed the expression of three transcription factors made by retinal progenitors: Ascl1 (Mash1), Ngn2 (Neurog2) and Olig2. We observed that progenitors were heterogeneous, expressing every possible combination of these transcription factors. To determine whether this progenitor heterogeneity correlated with different cell fate outcomes, we conducted Ascl1- and Ngn2-inducible expression fate mapping using the CreER™/LoxP system. We found that these two factors gave rise to markedly different distributions of cells. The Ngn2 lineage comprised all cell types, but retinal ganglion cells (RGCs) were exceedingly rare in the Ascl1 lineage. We next determined whether Ascl1 prevented RGC development. Ascl1-null mice had normal numbers of RGCs and, interestingly, we observed that a subset of Ascl1+ cells could give rise to cells expressing Math5 (Atoh7), a transcription factor required for RGC competence. Our results link progenitor heterogeneity to different fate outcomes. We show that Ascl1 expression defines a competence-restricted progenitor lineage in the retina, providing a new mechanism to explain fate diversification.

摘要

视网膜细胞命运多样化的机制尚未完全阐明。神经视网膜的 7 种主要细胞类型来源于发育过程中的多能祖细胞群体。这些祖细胞同时产生多种细胞类型,这表明祖细胞是一个异质群体。人们认为祖细胞基因表达的差异导致了祖细胞能力(即潜能)的差异,进而导致了命运多样化。为了进一步阐明命运多样化的机制,我们检测了视网膜祖细胞产生的三种转录因子的表达:Ascl1(Mash1)、Ngn2(Neurog2)和 Olig2。我们观察到祖细胞是异质的,表达这些转录因子的所有可能组合。为了确定这种祖细胞异质性是否与不同的细胞命运结果相关,我们使用 CreER™/LoxP 系统进行了 Ascl1 和 Ngn2 诱导表达命运映射。我们发现这两个因子导致了明显不同的细胞分布。Ngn2 谱系包含所有细胞类型,但在 Ascl1 谱系中视网膜节细胞(RGC)极为罕见。我们接下来确定 Ascl1 是否阻止了 RGC 的发育。Ascl1 缺失小鼠的 RGC 数量正常,有趣的是,我们观察到一部分 Ascl1+细胞可以产生表达 Math5(Atoh7)的细胞,Math5(Atoh7)是 RGC 能力所必需的转录因子。我们的研究结果将祖细胞异质性与不同的命运结果联系起来。我们表明,Ascl1 表达定义了视网膜中一个受限于能力的祖细胞谱系,为解释命运多样化提供了一个新的机制。

相似文献

1
Ascl1 expression defines a subpopulation of lineage-restricted progenitors in the mammalian retina.
Development. 2011 Aug;138(16):3519-31. doi: 10.1242/dev.064006. Epub 2011 Jul 19.
2
Heterochronic misexpression of Ascl1 in the Atoh7 retinal cell lineage blocks cell cycle exit.
Mol Cell Neurosci. 2013 May;54:108-20. doi: 10.1016/j.mcn.2013.02.004. Epub 2013 Feb 26.
3
Math5 defines the ganglion cell competence state in a subpopulation of retinal progenitor cells exiting the cell cycle.
Dev Biol. 2012 May 15;365(2):395-413. doi: 10.1016/j.ydbio.2012.03.006. Epub 2012 Mar 15.
4
Math5 determines the competence state of retinal ganglion cell progenitors.
Dev Biol. 2003 Dec 1;264(1):240-54. doi: 10.1016/j.ydbio.2003.08.005.
6
Two transcription factors, Pou4f2 and Isl1, are sufficient to specify the retinal ganglion cell fate.
Proc Natl Acad Sci U S A. 2015 Mar 31;112(13):E1559-68. doi: 10.1073/pnas.1421535112. Epub 2015 Mar 16.
8
Pushing the envelope of retinal ganglion cell genesis: context dependent function of Math5 (Atoh7).
Dev Biol. 2012 Aug 15;368(2):214-30. doi: 10.1016/j.ydbio.2012.05.005. Epub 2012 May 15.
9
Instructing neuronal identity during CNS development and astroglial-lineage reprogramming: Roles of NEUROG2 and ASCL1.
Brain Res. 2019 Feb 15;1705:66-74. doi: 10.1016/j.brainres.2018.02.045. Epub 2018 Mar 3.
10
Neurog2 controls the leading edge of neurogenesis in the mammalian retina.
Dev Biol. 2010 Apr 15;340(2):490-503. doi: 10.1016/j.ydbio.2010.02.002. Epub 2010 Feb 6.

引用本文的文献

1
Cell fate acquisition and reprogramming by the proneural transcription factor ASCL1.
Open Biol. 2025 Jun;15(6):250018. doi: 10.1098/rsob.250018. Epub 2025 Jun 18.
3
A large-scale CRISPR screen reveals context-specific genetic regulation of retinal ganglion cell regeneration.
Development. 2024 Aug 1;151(15). doi: 10.1242/dev.202754. Epub 2024 Aug 12.
4
Retinal Ganglion Cell Fate Induction by Ngn-Family Transcription Factors.
Invest Ophthalmol Vis Sci. 2023 Dec 1;64(15):32. doi: 10.1167/iovs.64.15.32.
7
The bHLH transcription factor ASCL1 promotes differentiation of endocrine cells in the stomach and is regulated by Notch signaling.
Am J Physiol Gastrointest Liver Physiol. 2023 Nov 1;325(5):G458-G470. doi: 10.1152/ajpgi.00043.2023. Epub 2023 Sep 12.
8
Molecular mechanisms controlling vertebrate retinal patterning, neurogenesis, and cell fate specification.
Trends Genet. 2023 Oct;39(10):736-757. doi: 10.1016/j.tig.2023.06.002. Epub 2023 Jul 8.
9
Intrinsic and Induced Neuronal Regeneration in the Mammalian Retina.
Antioxid Redox Signal. 2023 Dec;39(16-18):1039-1052. doi: 10.1089/ars.2023.0309. Epub 2023 Jul 31.

本文引用的文献

5
Dicer is required for the transition from early to late progenitor state in the developing mouse retina.
J Neurosci. 2010 Mar 17;30(11):4048-61. doi: 10.1523/JNEUROSCI.4982-09.2010.
6
Neurog2 controls the leading edge of neurogenesis in the mammalian retina.
Dev Biol. 2010 Apr 15;340(2):490-503. doi: 10.1016/j.ydbio.2010.02.002. Epub 2010 Feb 6.
7
Blimp1 controls photoreceptor versus bipolar cell fate choice during retinal development.
Development. 2010 Feb;137(4):619-29. doi: 10.1242/dev.043968.
9
Expression of the proneural gene encoding Mash1 suppresses MYCN mitotic activity.
J Cell Sci. 2009 Mar 1;122(Pt 5):595-9. doi: 10.1242/jcs.037556. Epub 2009 Feb 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验