Suppr超能文献

术中前列腺近距离放射治疗植入物的自动位姿校正三维重建。

Intraoperative 3D reconstruction of prostate brachytherapy implants with automatic pose correction.

机构信息

Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.

出版信息

Phys Med Biol. 2011 Aug 7;56(15):5011-27. doi: 10.1088/0031-9155/56/15/022. Epub 2011 Jul 19.

Abstract

The success of prostate brachytherapy critically depends on delivering adequate dose to the prostate gland, and the capability of intraoperatively localizing implanted seeds provides potential for dose evaluation and optimization during therapy. REDMAPS is a recently reported algorithm that carries out seed localization by detecting, matching and reconstructing seeds in only a few seconds from three acquired x-ray images (Lee et al 2011 IEEE Trans. Med. Imaging 29 38-51). In this paper, we present an automatic pose correction (APC) process that is combined with REDMAPS to allow for both more accurate seed reconstruction and the use of images with relatively large pose errors. APC uses a set of reconstructed seeds as a fiducial and corrects the image pose by minimizing the overall projection error. The seed matching and APC are iteratively computed until a stopping condition is met. Simulations and clinical studies show that APC significantly improves the reconstructions with an overall average matching rate of ⩾99.4%, reconstruction error of ⩽0.5 mm, and the matching solution optimality of ⩾99.8%.

摘要

前列腺近距离放射治疗的成功在很大程度上取决于将足够的剂量递送至前列腺,而术中定位植入种子的能力为治疗期间的剂量评估和优化提供了潜力。REDMAPS 是一种最近报道的算法,它通过仅从三个获取的 X 射线图像中检测、匹配和重建几秒钟内的种子来执行种子定位(Lee 等人,2011 年 IEEE 医学成像汇刊 29 38-51)。在本文中,我们提出了一种自动姿态校正(APC)过程,该过程与 REDMAPS 结合使用,以允许更准确地重建种子,并使用具有相对较大姿态误差的图像。APC 使用一组重建的种子作为基准,并通过最小化整体投影误差来校正图像姿态。种子匹配和 APC 是迭代计算的,直到满足停止条件。模拟和临床研究表明,APC 显著改善了重建,整体平均匹配率 ⩾99.4%,重建误差 ⩽0.5 毫米,匹配解决方案最优性 ⩾99.8%。

相似文献

1
Intraoperative 3D reconstruction of prostate brachytherapy implants with automatic pose correction.
Phys Med Biol. 2011 Aug 7;56(15):5011-27. doi: 10.1088/0031-9155/56/15/022. Epub 2011 Jul 19.
2
REDMAPS: reduced-dimensionality matching for prostate brachytherapy seed reconstruction.
IEEE Trans Med Imaging. 2011 Jan;30(1):38-51. doi: 10.1109/TMI.2010.2059709. Epub 2010 Jul 19.
6
Prostate brachytherapy seed reconstruction using C-arm rotation measurement and motion compensation.
Med Image Comput Comput Assist Interv. 2010;13(Pt 1):283-90. doi: 10.1007/978-3-642-15705-9_35.
7
Prostate brachytherapy seed localization with Gaussian blurring and camera self-calibration.
Med Image Comput Comput Assist Interv. 2008;11(Pt 2):636-43. doi: 10.1007/978-3-540-85990-1_76.
9
Tomosynthesis-based localization of radioactive seeds in prostate brachytherapy.
Med Phys. 2003 Dec;30(12):3135-42. doi: 10.1118/1.1624755.
10
Intraoperative fluoroscopic dose assessment in prostate brachytherapy patients.
Int J Radiat Oncol Biol Phys. 2005 Sep 1;63(1):301-7. doi: 10.1016/j.ijrobp.2005.05.039.

引用本文的文献

1
Superior Postimplant Dosimetry Achieved Using Dynamic Intraoperative Dosimetry for Permanent Prostate Brachytherapy.
Pract Radiat Oncol. 2021 Jul-Aug;11(4):264-271. doi: 10.1016/j.prro.2021.03.001. Epub 2021 Mar 13.
2
Deformable registration of X-ray to MRI for post-implant dosimetry in prostate brachytherapy.
Proc SPIE Int Soc Opt Eng. 2016 Feb-Mar;9786. doi: 10.1117/12.2216911. Epub 2016 Mar 18.
3
A deformable multimodal image registration using PET/CT and TRUS for intraoperative focal prostate brachytherapy.
Proc SPIE Int Soc Opt Eng. 2019 Feb;10951. doi: 10.1117/12.2512996. Epub 2019 Mar 8.
4
Deformable registration of PET/CT and ultrasound for disease-targeted focal prostate brachytherapy.
J Med Imaging (Bellingham). 2019 Jul;6(3):035003. doi: 10.1117/1.JMI.6.3.035003. Epub 2019 Sep 12.
5
Deformable registration of x ray and MRI for postimplant dosimetry in low dose rate prostate brachytherapy.
Med Phys. 2019 Sep;46(9):3961-3973. doi: 10.1002/mp.13667. Epub 2019 Jul 17.
6
Phase II study of intraoperative dosimetry for prostate brachytherapy using registered ultrasound and fluoroscopy.
Brachytherapy. 2018 Nov-Dec;17(6):858-865. doi: 10.1016/j.brachy.2018.07.013. Epub 2018 Sep 11.
8
Automatic seed picking for brachytherapy postimplant validation with 3D CT images.
Int J Comput Assist Radiol Surg. 2017 Nov;12(11):1985-1993. doi: 10.1007/s11548-017-1632-3. Epub 2017 Jun 22.
10
A Dynamic Dosimetry System for Prostate Brachytherapy.
Proc SPIE Int Soc Opt Eng. 2013 Mar 8;8671. doi: 10.1117/12.2008097.

本文引用的文献

2
Prostate brachytherapy seed reconstruction using C-arm rotation measurement and motion compensation.
Med Image Comput Comput Assist Interv. 2010;13(Pt 1):283-90. doi: 10.1007/978-3-642-15705-9_35.
3
REDMAPS: reduced-dimensionality matching for prostate brachytherapy seed reconstruction.
IEEE Trans Med Imaging. 2011 Jan;30(1):38-51. doi: 10.1109/TMI.2010.2059709. Epub 2010 Jul 19.
4
Cancer statistics, 2010.
CA Cancer J Clin. 2010 Sep-Oct;60(5):277-300. doi: 10.3322/caac.20073. Epub 2010 Jul 7.
5
Image-guided interventions: technology review and clinical applications.
Annu Rev Biomed Eng. 2010 Aug 15;12:119-42. doi: 10.1146/annurev-bioeng-070909-105249.
6
Prostate brachytherapy seed reconstruction with Gaussian blurring and optimal coverage cost.
IEEE Trans Med Imaging. 2009 Dec;28(12):1955-68. doi: 10.1109/TMI.2009.2026412. Epub 2009 Jul 14.
8
Brachytherapy seed localization using geometric and linear programming techniques.
IEEE Trans Med Imaging. 2007 Sep;26(9):1291-304. doi: 10.1109/TMI.2007.900740.
9
Effect of edema on postimplant dosimetry in prostate brachytherapy using CT/MRI fusion.
Int J Radiat Oncol Biol Phys. 2007 Oct 1;69(2):614-8. doi: 10.1016/j.ijrobp.2007.05.082.
10
Prostate brachytherapy seed reconstruction using an adaptive grouping technique.
Med Phys. 2007 Jul;34(7):2975-84. doi: 10.1118/1.2745936.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验