Suppr超能文献

结合稳定同位素(δD)和带回收数据,以提高候鸟起源的概率分配。

Combining stable-isotope (deltaD) and band recovery data to improve probabilistic assignment of migratory birds to origin.

机构信息

Environment Canada, 11 Innovation Blvd., Saskatoon, Saskatchewan S7N 3H5, Canada.

出版信息

Ecol Appl. 2011 Jun;21(4):1340-51. doi: 10.1890/09-2047.1.

Abstract

The recent application of stable-isotope analyses, particularly the use of stable-hydrogen-isotope (deltaD) measurements of animal tissues, has greatly improved our ability to infer geographic origins of migratory animals. However, many individual sources of error contribute to the overall error in assignment; thus likelihood-based assignments incorporating estimates of error are now favored. In addition, globally, the nature of the underlying precipitation-based deltaD isoscapes is such that longitudinal resolution is often compromised. For example, in North America, amount-weighted expected mean growing-season precipitation deltaD is similar between the boreal forest of southwestern Canada and areas of northern Quebec/Labrador and Alaska. Thus, it can often be difficult to distinguish objectively between these areas as potential origins for broadly distributed migrants using a single isotopic measurement. We developed a Bayesian framework for assigning geographic origins to migrant birds based on combined stable-isotope analysis of feathers and models of migratory directions estimated from band recovery data. We outline our method and show an example of its application for assigning origins to a population of migrant White-throated Sparrows (Zonotrichia albicollis) sampled at a Canadian Migration Monitoring Network station at Delta Marsh, Manitoba, Canada. We show that likelihood-based assignments of geographic origins can provide improved spatial resolution when models of migration direction are combined with assignments based on deltaD analysis of feathers.

摘要

最近,稳定同位素分析的应用,特别是动物组织中稳定氢同位素(δD)测量的应用,极大地提高了我们推断迁徙动物地理起源的能力。然而,许多单个的误差源都会导致分配的整体误差;因此,现在更倾向于基于可能性的分配,并包含误差估计。此外,在全球范围内,基于降水的 δD 同位素景观的性质使得纵向分辨率经常受到影响。例如,在北美洲,加拿大西南部的森林和魁北克/拉布拉多地区以及阿拉斯加之间的生长季节降水 δD 值的加权平均值相似。因此,使用单一的同位素测量值,通常很难客观地区分这些地区作为广泛分布的迁徙者的潜在起源。我们开发了一种基于羽毛的稳定同位素分析和基于环志回收数据估计的迁徙方向模型,来为候鸟分配地理起源的贝叶斯框架。我们概述了我们的方法,并展示了一个将加拿大马尼托巴省三角洲沼泽的加拿大候鸟监测网络站采集的候鸟白喉雀(Zonotrichia albicollis)的种群起源进行分配的应用示例。我们表明,当将迁徙方向模型与基于羽毛 δD 分析的分配相结合时,地理起源的可能性分配可以提供更高的空间分辨率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验