Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
Biochem J. 2011 Nov 15;440(1):147-56. doi: 10.1042/BJ20110536.
P(II) proteins belong to a family of highly conserved signal-transduction proteins that occurs widely in bacteria, archaea and plants. They respond to the central metabolites ATP, ADP and 2-OG (2-oxoglutarate), and control enzymes, transcription factors and transport proteins involved in nitrogen metabolism. In the present study, we examined the effect of ADP on in vitro P(II)-signalling properties for the cyanobacterium Synechococcus elongatus, a model for oxygenic phototrophic organisms. Different ADP/ATP ratios strongly affected the properties of P(II) signalling. Increasing ADP antagonized the binding of 2-OG and directly affected the interactions of P(II) with its target proteins. The resulting P(II)-signalling properties indicate that, in mixtures of ADP and ATP, P(II) trimers are occupied by mixtures of adenylate nucleotides. Binding and kinetic activation of NAGK (N-acetyl-L-glutamate kinase), the controlling enzyme of arginine biosynthesis, by P(II) was weakened by ADP, but relief from arginine inhibition remained unaffected. On the other hand, ADP enhanced the binding of P(II) to PipX, a co-activator of the transcription factor NtcA and, furthermore, antagonized the inhibitory effect of 2-OG on P(II)-PipX interaction. These results indicate that S. elongatus P(II) directly senses the adenylate energy charge, resulting in target-dependent differential modification of the P(II)-signalling properties.
P(II) 蛋白属于高度保守的信号转导蛋白家族,广泛存在于细菌、古菌和植物中。它们响应中心代谢物 ATP、ADP 和 2-OG(2-氧代戊二酸),并控制涉及氮代谢的酶、转录因子和转运蛋白。在本研究中,我们研究了 ADP 对蓝细菌集胞藻(Synechococcus elongatus)体外 P(II) 信号转导特性的影响,集胞藻是好氧光合生物的模型。不同的 ADP/ATP 比对 P(II) 信号转导特性的影响很大。ADP 的增加拮抗了 2-OG 的结合,并直接影响 P(II)与其靶蛋白的相互作用。由此产生的 P(II)信号转导特性表明,在 ADP 和 ATP 的混合物中,P(II)三聚体被混合的腺苷酸占据。ADP 削弱了 P(II)对 NAGK(N-乙酰-L-谷氨酸激酶)的结合和动力学激活,NAGK 是精氨酸生物合成的调控酶,但精氨酸抑制的缓解不受影响。另一方面,ADP 增强了 P(II)与 PipX 的结合,PipX 是转录因子 NtcA 的共激活因子,并且拮抗 2-OG 对 P(II)-PipX 相互作用的抑制作用。这些结果表明,集胞藻 P(II) 直接感知腺苷酸能量电荷,导致靶依赖性的 P(II)信号转导特性的差异修饰。