From the Max Planck Institute for Developmental Biology, Department of Protein Evolution, Spemannstrasse 35, 72076 Tübingen, Germany and.
J Biol Chem. 2014 Mar 28;289(13):8960-72. doi: 10.1074/jbc.M113.536557. Epub 2014 Feb 11.
PII signaling proteins comprise one of the most versatile signaling devices in nature and have a highly conserved structure. In cyanobacteria, PipX and N-acetyl-L-glutamate kinase are receptors of PII signaling, and these interactions are modulated by ADP, ATP, and 2-oxoglutarate. These effector molecules bind interdependently to three anti-cooperative binding sites on the trimeric PII protein and thereby affect its structure. Here we used the PII protein from Synechococcus elongatus PCC 7942 to reveal the structural basis of anti-cooperative ADP binding. Furthermore, we clarified the mutual influence of PII-receptor interaction and sensing of the ATP/ADP ratio. The crystal structures of two forms of trimeric PII, one with one ADP bound and the other with all three ADP-binding sites occupied, revealed significant differences in the ADP binding mode: at one site (S1) ADP is tightly bound through side-chain and main-chain interactions, whereas at the other two sites (S2 and S3) the ADP molecules are only bound by main-chain interactions. In the presence of the PII-receptor PipX, the affinity of ADP to the first binding site S1 strongly increases, whereas the affinity for ATP decreases due to PipX favoring the S1 conformation of PII-ADP. In consequence, the PII-PipX interaction is highly sensitive to subtle fluctuations in the ATP/ADP ratio. By contrast, the PII-N-acetyl-L-glutamate kinase interaction, which is negatively affected by ADP, is insensitive to these fluctuations. Modulation of the metabolite-sensing properties of PII by its receptors allows PII to differentially perceive signals in a target-specific manner and to perform multitasking signal transduction.
PII 信号蛋白是自然界中用途最广泛的信号转导装置之一,具有高度保守的结构。在蓝藻中,PipX 和 N-乙酰-L-谷氨酸激酶是 PII 信号的受体,这些相互作用受 ADP、ATP 和 2-氧戊二酸的调节。这些效应分子相互依赖地结合到三聚体 PII 蛋白的三个反协同结合位点上,从而影响其结构。在这里,我们使用来自 Synechococcus elongatus PCC 7942 的 PII 蛋白来揭示反协同 ADP 结合的结构基础。此外,我们阐明了 PII-受体相互作用和 ATP/ADP 比值感应的相互影响。两种三聚体 PII 形式的晶体结构,一种形式结合了一个 ADP,另一种形式结合了所有三个 ADP 结合位点,显示出 ADP 结合模式的显著差异:在一个位点(S1),ADP 通过侧链和主链相互作用紧密结合,而在另外两个位点(S2 和 S3),ADP 分子仅通过主链相互作用结合。在存在 PII 受体 PipX 的情况下,ADP 与第一个结合位点 S1 的亲和力大大增加,而由于 PipX 有利于 PII-ADP 的 S1 构象,ATP 的亲和力降低。因此,PII-PipX 相互作用对 ATP/ADP 比值的微小波动非常敏感。相比之下,PII-N-乙酰-L-谷氨酸激酶相互作用受 ADP 抑制,对这些波动不敏感。其受体对 PII 代谢物感应特性的调节使 PII 能够以靶标特异性的方式差异感知信号,并执行多任务信号转导。