Princess Margaret Hospital/Ontario Cancer Research Institute, Toronto, Ontario M5G 2M9, Canada.
Med Phys. 2011 May;38(5):2494-507. doi: 10.1118/1.3560888.
There is a growing concern regarding the dose delivered during x-ray fluoroscopy guided procedures, particularly in interventional cardiology and neuroradiology, and in real-time tumor tracking radiotherapy and radiosurgery. Many of these procedures involve long treatment times, and as such, there is cause for concern regarding the dose delivered and the associated radiation related risks. An insufficient dose, however, may convey less geometric information, which may lead to inaccuracy and imprecision in intervention placement. The purpose of this study is to investigate a method for achieving the required tracking uncertainty for a given interventional procedure using minimal dose.
A simple model is used to demonstrate that a relationship exists between imaging dose and tracking uncertainty. A feedback framework is introduced that exploits this relationship to modulate the tube current (and hence the dose) in order to maintain the required uncertainty for a given interventional procedure. This framework is evaluated in the context of a fiducial tracking problem associated with image-guided radiotherapy in the lung. A particle filter algorithm is used to robustly track the fiducial as it traverses through regions of high and low quantum noise. Published motion models are incorporated in a tracking test suite to evaluate the dose-localization performance trade-offs.
It is shown that using this framework, the entrance surface exposure can be reduced by up to 28.6% when feedback is employed to operate at a geometric tracking uncertainty of 0.3 mm.
The analysis reveals a potentially powerful technique for dynamic optimization of fluoroscopic imaging parameters to control the applied dose by exploiting the trade-off between tracking uncertainty and x-ray exposure per frame.
人们越来越关注 X 射线透视引导下的放射剂量,特别是在介入心脏病学和神经放射学领域,以及实时肿瘤跟踪放疗和放射外科领域。这些手术中的许多都涉及到较长的治疗时间,因此,人们有理由担心放射剂量和相关的辐射风险。然而,剂量不足可能会提供较少的几何信息,从而导致介入位置的不准确和不精确。本研究的目的是研究一种方法,通过使用最小剂量来实现给定介入手术所需的跟踪不确定性。
采用简单的模型来证明成像剂量与跟踪不确定性之间存在关系。引入了一种反馈框架,利用这种关系来调节管电流(从而调节剂量),以维持给定介入手术所需的不确定性。该框架在与图像引导放疗中肺内跟踪相关的基准跟踪问题的背景下进行了评估。使用粒子滤波器算法来稳健地跟踪基准,因为它穿过高低量子噪声区域。已发表的运动模型被纳入跟踪测试套件中,以评估剂量-定位性能的权衡。
结果表明,使用该框架,通过反馈操作以达到 0.3 毫米的几何跟踪不确定性,可以将入射表面暴露量降低多达 28.6%。
分析揭示了一种潜在的强大技术,用于通过利用跟踪不确定性和每帧 X 射线曝光之间的权衡,动态优化荧光透视成像参数来控制应用剂量。