Suppr超能文献

通过几何性能反馈最小化透视跟踪中的剂量。

Minimizing dose during fluoroscopic tracking through geometric performance feedback.

机构信息

Princess Margaret Hospital/Ontario Cancer Research Institute, Toronto, Ontario M5G 2M9, Canada.

出版信息

Med Phys. 2011 May;38(5):2494-507. doi: 10.1118/1.3560888.

Abstract

PURPOSE

There is a growing concern regarding the dose delivered during x-ray fluoroscopy guided procedures, particularly in interventional cardiology and neuroradiology, and in real-time tumor tracking radiotherapy and radiosurgery. Many of these procedures involve long treatment times, and as such, there is cause for concern regarding the dose delivered and the associated radiation related risks. An insufficient dose, however, may convey less geometric information, which may lead to inaccuracy and imprecision in intervention placement. The purpose of this study is to investigate a method for achieving the required tracking uncertainty for a given interventional procedure using minimal dose.

METHODS

A simple model is used to demonstrate that a relationship exists between imaging dose and tracking uncertainty. A feedback framework is introduced that exploits this relationship to modulate the tube current (and hence the dose) in order to maintain the required uncertainty for a given interventional procedure. This framework is evaluated in the context of a fiducial tracking problem associated with image-guided radiotherapy in the lung. A particle filter algorithm is used to robustly track the fiducial as it traverses through regions of high and low quantum noise. Published motion models are incorporated in a tracking test suite to evaluate the dose-localization performance trade-offs.

RESULTS

It is shown that using this framework, the entrance surface exposure can be reduced by up to 28.6% when feedback is employed to operate at a geometric tracking uncertainty of 0.3 mm.

CONCLUSIONS

The analysis reveals a potentially powerful technique for dynamic optimization of fluoroscopic imaging parameters to control the applied dose by exploiting the trade-off between tracking uncertainty and x-ray exposure per frame.

摘要

目的

人们越来越关注 X 射线透视引导下的放射剂量,特别是在介入心脏病学和神经放射学领域,以及实时肿瘤跟踪放疗和放射外科领域。这些手术中的许多都涉及到较长的治疗时间,因此,人们有理由担心放射剂量和相关的辐射风险。然而,剂量不足可能会提供较少的几何信息,从而导致介入位置的不准确和不精确。本研究的目的是研究一种方法,通过使用最小剂量来实现给定介入手术所需的跟踪不确定性。

方法

采用简单的模型来证明成像剂量与跟踪不确定性之间存在关系。引入了一种反馈框架,利用这种关系来调节管电流(从而调节剂量),以维持给定介入手术所需的不确定性。该框架在与图像引导放疗中肺内跟踪相关的基准跟踪问题的背景下进行了评估。使用粒子滤波器算法来稳健地跟踪基准,因为它穿过高低量子噪声区域。已发表的运动模型被纳入跟踪测试套件中,以评估剂量-定位性能的权衡。

结果

结果表明,使用该框架,通过反馈操作以达到 0.3 毫米的几何跟踪不确定性,可以将入射表面暴露量降低多达 28.6%。

结论

分析揭示了一种潜在的强大技术,用于通过利用跟踪不确定性和每帧 X 射线曝光之间的权衡,动态优化荧光透视成像参数来控制应用剂量。

相似文献

5
Fluoroscopic frame rates: not only dose.荧光透视帧率:不仅仅是剂量。
AJR Am J Roentgenol. 2014 Sep;203(3):W234-6. doi: 10.2214/AJR.13.11041.
7
Fluoroscopic tumor tracking for image-guided lung cancer radiotherapy.用于图像引导肺癌放疗的荧光透视肿瘤追踪
Phys Med Biol. 2009 Feb 21;54(4):981-92. doi: 10.1088/0031-9155/54/4/011. Epub 2009 Jan 16.
9
Edge enhancement algorithm for low-dose X-ray fluoroscopic imaging.低剂量 X 射线透视成像的边缘增强算法。
Comput Methods Programs Biomed. 2017 Dec;152:45-52. doi: 10.1016/j.cmpb.2017.09.010. Epub 2017 Sep 15.

引用本文的文献

2
Real-time 4-D radiotherapy for lung cancer.肺癌实时 4-D 放疗。
Cancer Sci. 2012 Jan;103(1):1-6. doi: 10.1111/j.1349-7006.2011.02114.x. Epub 2011 Nov 14.

本文引用的文献

2
Cancer risks from diagnostic radiology.诊断性放射学带来的癌症风险。
Br J Radiol. 2008 May;81(965):362-78. doi: 10.1259/bjr/01948454.
10
Automatic exposure control techniques for individual dose adaptation.
Radiology. 2005 Apr;235(1):335-6; author reply 336. doi: 10.1148/radiol.2351041751.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验