Suppr超能文献

伽玛刀放射外科中最优靶区适形度的理论研究。

A theoretical investigation of optimal target-dose conformity in gamma knife radiosurgery.

机构信息

Taylor McAdam Bell Neuroscience Institute, Washington Hospital Healthcare System, 2500 Mowry Avenue, Fremont, California 94538, USA.

出版信息

Med Phys. 2011 May;38(5):2812-9. doi: 10.1118/1.3582945.

Abstract

PURPOSE

The purpose of this paper is to suggest guidelines for target-dose conformity in gamma knife stereotactic radiosurgery (GKSRS) by taking into account factors that have been linked to GKSRS complications. We also suggest an explanation for the failure of previous studies to find a correlation between improved conformity index and reduced risk of GKSRS toxicity, where the conformity index, C(S), is defined as the ratio of the prescription volume, V(P), to the target volume, V(T).

METHODS

Previous investigations have shown that symptomatic toxicity in GKSRS is correlated with the volume of nontarget tissue receiving the prescription dose, D(P). In this study, we formulated the volume of nontarget tissue, V(NTD), receiving dose D < or = D(P) as a function of the target volume, prescription volume, and prescription dose. We verified the model for D = 12-15 Gy by comparing VNTD calculated from the model versus VNTD calculated directly for 114 tumors in 63 consecutive patients treated at our institution. Once verified, we used this formulation of V(NTD) to calculate the volume of nontarget tissue receiving doses between 12 and 15 Gy from published data reported for patients experiencing varying degrees of GKSRS toxicity. Next, assuming that the VNTD values calculated for those patients who had either no toxicity or mild neurological symptoms in the published study represented safe levels of normal tissue irradiated to the dose in question, we substituted these V(NTD) values into an equation expressing C(S) in terms of V(NTD), V(T), and D(P), and examined how C(S) varied as a function of V(T) and D(P).

RESULTS

The R2 value for the correlation between VNTD calculated directly or calculated with the proposed formula for VNTD ranged from 0.98 to 0.99, indicating that the formula accurately models the behavior of the nontarget volume receiving dose D. Applying this formulation of VNTD to historical data suggested that the requirements V(NT15) < or = 2.2 cm3, V(NT14) < or = 2.6 cm3, V(NT13) < or = 3.1 cm3 and V(NT12) < or = 3.8 cm3 minimize the risk of severe complications following GKSRS. Imposing these criteria imply that as the target size increases, delivering a given prescription dose requires increasing target-dose conformity. For tumor sizes >5 cm3 C(S) must be < or = 1.2 to restrict V(NTD) to the values listed above. For very small targets, on the other hand, nearly any reasonable conformity index will lead to acceptable values of V(NTD). These observations may explain why previous investigations failed to show a correlation between improved conformity and decreased toxicity in GKSRS, because in these earlier studies the range of conformity indices represented was not wide enough, in particular C(S) values <1.3 were not represented for large tumors.

CONCLUSIONS

Our model suggests that for target volumes > or = 3 cm3, high levels of target-dose conformity (C(S) < 1.3) are required for typical GKSRS prescription doses in order to limit VNTD to levels associated with either no toxicity or mild neurological symptoms in a previous investigation.

摘要

目的

本文旨在通过考虑与伽玛刀立体定向放射外科(GKSRS)并发症相关的因素,为 GKSRS 中的目标剂量一致性提供指导方针。我们还对以往研究未能发现一致性指数提高与 GKSRS 毒性风险降低之间存在相关性的原因提出解释,其中一致性指数 C(S)定义为处方体积 V(P)与靶体积 V(T)的比值。

方法

先前的研究表明,GKSRS 中的症状性毒性与接受处方剂量的非靶组织体积 V(P)有关。在本研究中,我们将接受剂量 D <或= D(P)的非靶组织体积 V(NTD)表示为靶体积、处方体积和处方剂量的函数。我们通过将模型计算出的 VNTD 与我们机构治疗的 63 例连续患者的 114 个肿瘤的直接计算的 VNTD 进行比较,验证了 D = 12-15 Gy 的模型。验证后,我们使用该 V(NTD)公式计算了发表数据中接受 12 至 15 Gy 剂量的非靶组织体积,这些数据报告了患者经历不同程度 GKSRS 毒性的情况。接下来,假设在已发表的研究中,那些没有毒性或仅有轻度神经症状的患者的 VNTD 值代表了所讨论剂量下正常组织的安全照射水平,我们将这些 V(NTD)值代入表示 C(S)与 V(NTD)、V(T)和 D(P)的关系的方程中,并检查 C(S)如何随 V(T)和 D(P)而变化。

结果

直接计算或使用提出的 V(NTD)公式计算得到的 VNTD 的相关系数 R2 值在 0.98 至 0.99 之间,表明该公式准确地模拟了接受剂量 D 的非靶体积的行为。将此 V(NTD)公式应用于历史数据表明,V(NT15) <或= 2.2 cm3、V(NT14) <或= 2.6 cm3、V(NT13) <或= 3.1 cm3 和 V(NT12) <或= 3.8 cm3 可最大程度地降低 GKSRS 后发生严重并发症的风险。采用这些标准意味着,随着靶区尺寸的增加,为了达到给定的处方剂量,需要提高靶区剂量一致性。对于肿瘤大小>5 cm3,C(S)必须<或=1.2,以将 V(NTD)限制在上述值以内。另一方面,对于非常小的靶区,几乎任何合理的一致性指数都将导致可接受的 V(NTD)值。这些观察结果可能解释了为什么以前的研究未能显示出 GKSRS 中一致性提高与毒性降低之间存在相关性,因为在这些早期研究中,代表的一致性指数范围不够宽,特别是对于较大的肿瘤,C(S)值<1.3 未被代表。

结论

我们的模型表明,对于体积>或=3 cm3 的靶区,为了限制 V(NTD)达到之前研究中与无毒性或轻度神经症状相关的水平,典型的 GKSRS 处方剂量需要高水平的靶区剂量一致性(C(S)<1.3)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验