Ye Chengyin, Cui Yuehua, Wei Changshuai, Elston Robert C, Zhu Jun, Lu Qing
College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China.
Hum Hered. 2011;71(3):161-70. doi: 10.1159/000327299. Epub 2011 Jul 20.
Predictive tests that capitalize on emerging genetic findings hold great promise for enhanced personalized healthcare. With the emergence of a large amount of data from genome-wide association studies (GWAS), interest has shifted towards high-dimensional risk prediction.
To form predictive genetic tests on high-dimensional data, we propose a non-parametric method, called the 'forward ROC method'. The method adopts a computationally efficient algorithm to search for environment risk factors, genetic predictors on the entire genome, and their possible interactions for an optimal risk prediction model, without relying on prior knowledge of known risk factors. An efficient yet powerful procedure is also incorporated into the method to handle missing data.
Through simulations and real data applications, we found our proposed method outperformed the existing approaches. We applied the new method to the Wellcome Trust rheumatoid arthritis GWAS dataset with a total of 460,547 markers. The results from the risk prediction analysis suggested important roles of HLA-DRB1 and PTPN22 in predicting rheumatoid arthritis.
We proposed a powerful and robust approach for high-dimensional risk prediction. The new method will facilitate future risk prediction that considers a large number of predictors and their interaction for improved performance.
利用新出现的基因研究结果的预测性测试对于加强个性化医疗保健具有巨大潜力。随着全基因组关联研究(GWAS)产生大量数据,人们的兴趣已转向高维风险预测。
为了在高维数据上形成预测性基因测试,我们提出了一种非参数方法,称为“前向ROC方法”。该方法采用一种计算效率高的算法来搜索环境风险因素、全基因组上的基因预测因子及其可能的相互作用,以建立一个最优风险预测模型,而不依赖于已知风险因素的先验知识。该方法还纳入了一个高效且强大的程序来处理缺失数据。
通过模拟和实际数据应用,我们发现我们提出的方法优于现有方法。我们将新方法应用于总共包含460,547个标记的惠康信托类风湿性关节炎GWAS数据集。风险预测分析结果表明HLA-DRB1和PTPN22在预测类风湿性关节炎方面具有重要作用。
我们提出了一种用于高维风险预测的强大且稳健的方法。新方法将有助于未来的风险预测,该预测考虑大量预测因子及其相互作用以提高性能。