Suppr超能文献

计算机模拟蛋白质基序发现与结构分析。

In silico protein motif discovery and structural analysis.

作者信息

Mooney Catherine, Davey Norman, Martin Alberto J M, Walsh Ian, Shields Denis C, Pollastri Gianluca

机构信息

Complex and Adaptive Systems Laboratory, University College Dublin, Belfield, Dublin 4, Ireland.

出版信息

Methods Mol Biol. 2011;760:341-53. doi: 10.1007/978-1-61779-176-5_21.

Abstract

A wealth of in silico tools is available for protein motif discovery and structural analysis. The aim of this chapter is to collect some of the most common and useful tools and to guide the biologist in their use. A detailed explanation is provided for the use of Distill, a suite of web servers for the prediction of protein structural features and the prediction of full-atom 3D models from a protein sequence. Besides this, we also provide pointers to many other tools available for motif discovery and secondary and tertiary structure prediction from a primary amino acid sequence. The prediction of protein intrinsic disorder and the prediction of functional sites and SLiMs are also briefly discussed. Given that user queries vary greatly in size, scope and character, the trade-offs in speed, accuracy and scale need to be considered when choosing which methods to adopt.

摘要

有大量的计算机模拟工具可用于蛋白质基序发现和结构分析。本章的目的是收集一些最常见且有用的工具,并指导生物学家如何使用它们。对于Distill(一套用于预测蛋白质结构特征以及从蛋白质序列预测全原子三维模型的网络服务器)的使用,提供了详细的解释。除此之外,我们还提供了许多其他工具的相关指引,这些工具可用于从一级氨基酸序列进行基序发现以及二级和三级结构预测。还简要讨论了蛋白质内在无序预测以及功能位点和短线性基序(SLiMs)的预测。鉴于用户查询在规模、范围和特征上差异很大,在选择采用哪种方法时,需要考虑速度、准确性和规模方面的权衡。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验