College of Life Science, Shandong Agricultural University, Shandong Taian, China.
FEBS J. 2011 Sep;278(18):3419-30. doi: 10.1111/j.1742-4658.2011.08265.x. Epub 2011 Aug 24.
In chloroplasts, thiol/disulfide-redox-regulated proteins have been linked to numerous metabolic pathways. However, the biochemical system for disulfide bond formation in chloroplasts remains undetermined. In the present study, we characterized an oxidoreductase, AtVKOR-DsbA, encoded by the gene At4g35760 as a potential disulfide bond oxidant in Arabidopsis. The gene product contains two distinct domains: an integral membrane domain homologous to the catalytic subunit of mammalian vitamin K epoxide reductase (VKOR) and a soluble DsbA-like domain. Transient expression of green fluorescent protein fusion in Arabidopsis protoplasts indicated that AtVKOR-DsbA is located in the chloroplast. The first 45 amino acids from the N-terminus were found to act as a transit peptide targeting the protein to the chloroplast. An immunoblot assay of chloroplast fractions revealed that AtVKOR-DsbA was localized in the thylakoid. A motility complementation assay showed that the full-length of AtVKOR-DsbA, if lacking its transit peptide, could catalyze the formation of disulfide bonds. Among the 10 cysteine residues present in the mature protein, eight cysteines (four in the AtVKOR domain and four in the AtDsbA domain) were found to be essential for promoting disulfide bond formation. The topological arrangement of AtVKOR-DsbA was assayed using alkaline phosphatase sandwich fusions. From these results, we developed a possible topology model of AtVKOR-DsbA in chloroplasts. We propose that the integral membrane domain of AtVKOR-DsbA contains four transmembrane helices, and that both termini and the cysteines involved in catalyzing the formation of disulfide bonds face the oxidative thylakoid lumen. These studies may help to resolve some of the issues surrounding the structure and function of AtVKOR-DsbA in Arabidopsis chloroplasts.
在叶绿体中,巯基/二硫键氧化还原调节蛋白与许多代谢途径有关。然而,叶绿体中二硫键形成的生化系统仍未确定。在本研究中,我们鉴定了一个由 At4g35760 基因编码的氧化还原酶 AtVKOR-DsbA,它可能是拟南芥中二硫键氧化剂。该基因产物包含两个不同的结构域:一个与哺乳动物维生素 K 环氧化物还原酶(VKOR)催化亚基同源的完整膜结构域和一个可溶性 DsbA 样结构域。绿色荧光蛋白融合蛋白在拟南芥原生质体中的瞬时表达表明 AtVKOR-DsbA 位于叶绿体中。从 N 端的前 45 个氨基酸被发现作为一个靶向蛋白到叶绿体的转运肽。叶绿体部分的免疫印迹分析表明 AtVKOR-DsbA 定位于类囊体。运动互补测定表明,全长的 AtVKOR-DsbA(如果缺少其转运肽)可以催化二硫键的形成。在成熟蛋白中存在的 10 个半胱氨酸残基中,发现 8 个半胱氨酸(AtVKOR 结构域中的 4 个和 AtDsbA 结构域中的 4 个)对于促进二硫键形成是必需的。使用碱性磷酸酶夹心融合物测定了 AtVKOR-DsbA 的拓扑排列。根据这些结果,我们提出了 AtVKOR-DsbA 在叶绿体中的可能拓扑模型。我们提出 AtVKOR-DsbA 的完整膜结构域包含四个跨膜螺旋,并且参与催化二硫键形成的两个末端和半胱氨酸都面向氧化的类囊体腔。这些研究可能有助于解决一些关于拟南芥叶绿体中 AtVKOR-DsbA 的结构和功能的问题。